Comparison on Mode I and Mode II Interlaminar Fracture Toughness of Composite Plates according to Curvature Changes

2022 ◽  
Vol 46 (1) ◽  
pp. 101-106
Author(s):  
Seung-Gu Kang ◽  
Kwang-Bok Shin
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2103
Author(s):  
Christophe Floreani ◽  
Colin Robert ◽  
Parvez Alam ◽  
Peter Davies ◽  
Conchúr M. Ó. Brádaigh

Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Mohamad Alsaadi 1,2 ◽  
Ahmet Erkliğ 2

In this study, the influence of sewage sludge ash (SSA) waste particle contents on the mechanical properties and interlaminar fracture toughness for mode I and mode II delamination of S-glass fiber reinforced epoxy composites were investigated. Composite laminate specimens for tensile, flexural double-cantilever beam (DCB) and end-notched flexure (ENF) tests were prepared and tested according to ASTM standards with 5, 10, 15 and 20 wt% SSA filled S-glass/epoxy composites. Properties improvement reasons was explained based on optical and scanning electron microscopy. The highest improvement in tensile and flexural strength was obtained with 10 wt% content of SSA. The highest mode I and mode II interlaminar fracture toughness’s were obtained with 15 wt% content of SSA. The mode I and mode II interlaminar fracture toughness’s improved by 33 and 63.6%, respectively, compared to the composite without SSA.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 803 ◽  
Author(s):  
Feng Xu ◽  
Bo Yang ◽  
Lijie Feng ◽  
Dedong Huang ◽  
Min Xia

Non-woven carbon tissue (NWCT) with different fiber lengths was prepared with a simple surfactant-assistant dispersion and filtration method and used as interleaving to enhance both delamination resistance and electrical conductivity of carbon fiber reinforced plastics (CFRPs) laminates. The toughing effect of NWCT on both Mode I and Mode II interlaminar fracture of CFRPs laminate is dependent on length of fibers, where the shorter carbon fibers (0.8 mm) perform better on Mode I interlaminar fracture toughness improvement whereas longer carbon fibers (4.3 mm) give more contribution to the Mode II interlaminar fracture toughness increase, comparing with the baseline composites, and the toughness increase was achieved without compromising of flexural mechanical properties. More interestingly, comparing with the baseline composites, the electrical conductivity of the interleaved composites exhibited a significant enhancement with in-plane and through-the-thickness direction, respectively. Microscopy analysis of the carbon tissue interleaving area in the laminate indicated that carbon fibers with shorter length can form into a 3D network with more fibers aligned along through-the-thickness direction compared with longer ones. The shorter fibers thus potentially provide more effective fiber bridges, pull-out and matrix deformation during the crack propagation and improve the electric conductivity significantly in through-the-thickness direction.


2007 ◽  
Vol 121-123 ◽  
pp. 1403-1406 ◽  
Author(s):  
Shi Qiang Deng ◽  
P. Rosso ◽  
Lin Ye ◽  
Klaus Friedrich

Fracture toughness and other mechanical properties of epoxies modified with nano-slica particles were measured to elaborate effects of nano-additives on fracture behaviour of the modified epoxies. Interlaminar fracture behaviours of the nano-silica modified CF/EP composites were subsequently investigated by conducting Mode-I and Mode-II interlaminar fracture toughness tests as well as transverse tension tests. It was found that the fracture toughness of the nano-silica modified epoxies and the interlaminar fracture toughness of nano-silica modified CF/EP composites have been increased significantly (>50%), while the strength and modulus of the materials remain unchanged or slightly higher. In particular, the nano-silica modified epoxies showed only very little reduction in the glass transition temperature (Tg).


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hardik Bhanushali ◽  
Philip D. Bradford

This investigation describes the design, fabrication, and testing of woven glass fiber reinforced epoxy matrix laminates with aligned CNT sheets integrated between plies in order to improve the matrix dominated through thickness properties such as the interlaminar fracture toughness at ply interfaces. Using aligned CNT sheets allows for a concentration of millimeter long CNTs at the most likely point of laminate failure. Mode I and Mode II interlaminar fracture toughness of various CNT modified samples were investigated using double cantilever beam (DCB) and end notched flexure (ENF) experiments, respectively. Short beam strength (SBS) and in-plane tensile properties of the CNT modified samples were also investigated. Moderate improvement was observed in Mode I and Mode II fracture toughness at crack initiation when aligned CNT sheets with a basis weight of 0.354 g/m2were used to modify the ply interface. No compromise in the in-plane mechanical properties of the laminate was observed and very little improvement was observed in the shear related short beam strength of the CNT modified laminates as compared to the control samples. Integration of aligned CNT sheets into the composite laminate imparted in-plane and through thickness electrical properties into the nonconductive glass fiber reinforced epoxy composite laminates.


2016 ◽  
Vol 1135 ◽  
pp. 35-51 ◽  
Author(s):  
Rita de Cássia Mendonça Sales ◽  
Bianca Lis Rossi Dias Endo ◽  
Maurício Vicente Donadon

Composite materials have been increasingly used in the aerospace industry for the manufacturing of structures, because of the associated properties of low weight and high mechanical resistance. On the other hand, they have low delamination resistance. This paper presents the results of an experimental study performed to obtain the values of interlaminar fracture toughness (G) of a laminate under three different temperatures, using 0º carbon-epoxy prepreg fabric plies and manufactured via Hand lay up cured in autoclave (HLUP). Double Cantilever Beam (DCB) tests were performed to evaluate mode I toughness, Four Point Bend End Notched Flexure (4ENF) for mode II and Mixed Mode Bending (MMB) for mixed mode I / mode II at -54°C, 25°C and 80°C. The data were collected and analyzed using a routine developed in Matlab®. Finally, the relation between GI and GII through the failure envelope and the temperature influence on the interlaminar fracture toughness was assessed.


Sign in / Sign up

Export Citation Format

Share Document