scholarly journals Theoretical research of the force field of (difluoroamino)trinitromethane in the coordinates Хδ0

2020 ◽  
Vol 62 (5) ◽  
pp. 102-106
Author(s):  
Olga S. Averyanova ◽  
◽  
Alexander V. Belik ◽  

Actual problem of modern chemists-researchers is studying the properties of molecules of compounds. The latest achievements in the field of computer engineering and quantum chemistry make it possible to research various physicochemical parameters of studying compounds using theoretical calculations. Calculation methods can greatly simplify the task, as they are safer and more economical than experiment. It is noted that methane derivatives are also currently of interest for research in connection with their widespread use. This paper is devoted to the study of the force fields of molecule of (difluoro-amino)trinitromethane using quantum chemical calculations. The Becke-Lee-Yang-Parr method of density functional theory (DFT) B3LYP with a hybrid potential of 6-311++G(3df, 3pd) was chosen as the main approximation for the work performed, since when using it, the best quality of the result is noted. Also, in the present work, as an alternative to chemical (natural) coordinates, new coordinates Xδ0 were chosen, which allows one to take into account torsional vibrations. The calculations presented in this work were performed using the Gaussian and GaussView programs, designed to calculate a large number of properties and characteristics of chemical reactions. In this paper, using the proposed approach, the geometry of the molecule of (difluoroamino)tri-notromethane has been optimized, the geometric parameters of these compound were considered, in particular, the valence angles, dihedral angles, and long bonds were calculated, corresponding to the minimum energy of this molecule. For the first time, generalized force coefficients for F2NC(NO2)3 were calculated, and the "stiffness" of the chemical compounds of the molecule under study was evaluated. The frequencies of normal vibrations (wave numbers) for the studied compound in the harmonic approximation were calculated and analyzed. A comparison of the obtained wave numbers with experimental data is given. The results obtained indicate a satisfactory agreement between theory and experiment. A general view of the vibrational spectrum of (difluoroamino)trinotromethane obtained as a result of quantum chemical calculations is presented. The conclusion is drawn about the possibilities of applying the B3LYP 6-311++G(3df, 3pd) approach for calculating the frequencies of normal vibrations and force coefficients.

2016 ◽  
Vol 39 (3-4) ◽  
Author(s):  
Sandeep Pokharia ◽  
Rachana Joshi ◽  
Mamta Pokharia ◽  
Swatantra Kumar Yadav ◽  
Hirdyesh Mishra

AbstractThe quantum-chemical calculations based on density functional theory (DFT) have been performed on the diphenyltin(IV) derivative of glycyl-phenylalanine (H


Author(s):  
Mallikarjunachari Uppuladinne ◽  
Dikshita Dowerah ◽  
Uddhavesh Sonavane ◽  
Suvendra Kumar Ray ◽  
Ramesh Deka ◽  
...  

2014 ◽  
Vol 50 (62) ◽  
pp. 8522-8525 ◽  
Author(s):  
Amrita Pal ◽  
Kumar Vanka

Full quantum chemical calculations with density functional theory (DFT) show that bond-strengthening back-donation to a π-diborene, recently discovered for transition metal systems (Braunschweig and co-workers, Nat. Chem., 2013, 5, 115–121), would be just as favored for Main Group silylene complexes.


2022 ◽  
Vol 12 ◽  
Author(s):  
Rameshwar K. Dongare ◽  
Shaukatali N. Inamdar ◽  
Radhakrishnan M. Tigote

Herein, we report the density functional study of benzoyl thiourea derivatives linked to morpholine and piperidine to evaluate their antifungal activity. Overall six compounds BTP 1-3 and BTM 4-6 were optimized with DFT using the B3LYP method with 6-31G(d,p) basis set. The molecular geometry, bond lengths, bond angles, atomic charges and HOMO-LUMO energy gap have been investigated. The structural parameters have been compared with the reported experimental results and structure- antifungal activity relationship is explored in details. The calculated results from DFT were discussed using all Quantum chemical parameters of the compounds. Introduction: Benzoyl thiourea derivatives linked with morpholine and piperidine were reported to have good antifungal activity. Objective: To find the correlations between the quantum chemical calculations and the antifungal activity for the benzoyl thiourea derivatives linked with morpholine and piperidine. Method: Optimization was carried out with DFT using B3LYP method utilizing 6-31G(d,p) basis set. Results: A good correlation between the quantum chemical calculations and the antifungal activity for the benzoyl thiourea derivatives linked with morpholine and piperidine was found. Conclusion: The DFT study of benzoyl thiourea derivatives linked to morpholine and piperidine was evaluated for their antifungal activity and it showed good correlations of activity with the quantum chemical parameters.


Sign in / Sign up

Export Citation Format

Share Document