scholarly journals Ampicillin adsorption by some antacids

2004 ◽  
Vol 72 (4) ◽  
pp. 309-316 ◽  
Author(s):  
Roland Okor ◽  
Olanike Fajuyigbe ◽  
Florence Eichie

In certain situations of peptic ulcers ampicillin has been co-administered with bismuth carbonate with an implication for adsorption of the ampicillin. To quantify this effect the kinetics and extent of adsorption of ampicillin by some commonly used antacids were measured; these are bismuth carbonate, magnesium trisilicate and aluminium hydroxide. The adsorption of ampicillin by bismuth carbonate followed the Langmuir adsorption isotherm, which suggests chemisorptions. It was characterized by a strong adsorption at a low adsorbate (ampicillin) concentration but the % adsorption decreased with increase in adsorbate concentration, which is a feature of a saturated monolayer adsorption. On the other hand, the adsorption by magnesium trisilicate and aluminium hydroxide followed the Freundlich adsorption isotherm characterized by a low adsorption at a low adsobate concentration but this increased slightly with increase in adsorbate concentration, suggesting a weak physical adsorption. The adsorption capacities (mg/g) of the adsorbate were 1.64 (bismuth carbonate) 0.04 (magnesium carbonate) and 0.03 (aluminium hydroxide). Bismuth carbonate thus gave by far the highest degree of adsorption. The conclusion is that the co-administration of ampicillin and bismuth carbonate in the treatment of certain peptic ulcers is erroneous.

1999 ◽  
Vol 77 (10) ◽  
pp. 1594-1598 ◽  
Author(s):  
Chakib Ameziane Hassani ◽  
Hugues Ménard

A study by high performance liquid chromatography of adsorption isotherm of HAP in toluene on Al(OH)3 heated between 25 and 700°C shows that the rate of adsorption is maximal on the Al(OH)3 heated at 300°C. The measurement of electrokinetic potential and the surface area of adsorbants approve this result. The determination of adsorption enthalpies of different HAP on the aluminium hydroxide has shown the existence of physical adsorption. The adsorbing power of Al(OH)3 heated at 300°C is compared with that of other materials known or suspected very carcinogens.Key words: adsorption isotherm of HAP, aluminium hydroxide.


2021 ◽  
Vol 5 (2) ◽  
pp. 621-634
Author(s):  
Abdulfatai A. Siaka ◽  
Sunday O. Owa ◽  
M. K. Gafar ◽  
J. O. Okunola

The corrosion inhibition potential of lannea acida (LA) ethanol leaves extract was investigated using mild steel in 1.0 M HCl solution. The leaves extract was characterized using FT- IR Spectroscopy. The surface analysis of the mild steel was also studied using scanning electron microscopy. The study was carried out at an ambient temperature and selected high temperatures. The LA leaves extract concentration ranges from 0.1- 0.9g/L. The data obtained from weight loss measurements show that the leaves extract repressed the corrosion rate of mild steel. The increase in temperature with a corresponding increase or decrease in the inhibitor efficiency of LA leaves extract shows that the adsorption mechanism obeyed comprehensive adsorption. The value of activation energies (Ea) obtained which ranged from 15.32 to 17.63 kJ mol-1 agrees with the physical adsorption mechanism. The values of enthalpy of activation (ΔH*) obtained were positive and ranged from 38.29 to 59.00 KJ mol-1 is an indication that the dissolution of the mild steel is an endothermic reaction and requires less energy in the presence of LA leaves extract. The values of entropy of activation (ΔS*) obtained which were negative indicate that the activated complex in the rate-determining step is associative rather than dissociative. The kinetics study shows the adsorption process follows first-order kinetics. The adsorption isotherm data fitted best into Freundlich adsorption isotherm


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Qing Chen ◽  
Yuanyuan Tian ◽  
Peng Li ◽  
Changhui Yan ◽  
Yu Pang ◽  
...  

Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller) adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.


1931 ◽  
Vol 31 (1) ◽  
pp. 96-123 ◽  
Author(s):  
F. Haynes

The following dusts produce a fibrosis in the guinea-pig's lung, and are therefore to be classed as dusts whose inhalation in industry would be attended by risks of pneumoconiosis. The most deadly of all dusts examined was precipitated silica. Less dangerous, but all producing fibrosis, were the following, arranged in order of decreasing toxicity: flint, slate, aluminium hydroxide, precipitated chalk, magnesium carbonate and carborundum. In the concentrations used in the experiments calcspar and emery were border-line dusts, indicating that their inhalation in any considerable quantity would cause fibrosis. Wood charcoal inhaled in large amount produces a slight fibrosis, and must, therefore, be placed on the “dangerous” list. Colloidal coal, when inhaled in massive amounts, is potentially dangerous, while shale under similar conditions is rather more dangerous.Haematite, talc, and molecular mixtures of soluble silica with aluminium hydroxide and magnesium carbonate respectively were not found to cause any permanent lesions in the lung.The deductions to be drawn from this work are:1. All inhaled particles are rapidly ingested by certain individual cells belonging to the alveolar epithelium.2. These cells (dust cells or phagocytes) remain in the lung parenchyma until they have ingested an amount of dust constituting the cell's saturation load. This load varies with different dusts.3. A cell having attained its saturation load becomes sooner or later detached from the alveolar wall and either migrates into the lymphatics or becomes free in the alveolus. In the former case it passes into the pulmonary lymphoid tissue and thence to the bronchial lymph glands. In the latter case it passes up the bronchial tree to be either coughed out or swallowed.4. Dust cells which speedily leave the alveolar wall are principally eliminated by the bronchi.5. In the case of a dust cell being eliminated from the lung via the lymphatics, it may be arrested in the periatrial lymphatics on account of its bulk. The dam thus produced offers obstruction to the passage of other dust cells shed into the alveoli. Groups of free dust cells in the obstructed alveoli form plaques, which degenerate and liberate their dust. This is again ingested, and the irritation caused by such a process may lead to fibrosis.6. The continued presence of dust-laden cells in the lymphatics may set up a foreign body irritation, with resulting fibrosis.7. Most inhaled particles contain soluble matter to at least a very small extent. The solute may be either harmlessly active or toxic. If the former, the cell is stimulated to detach itself from the alveolar wall, and so remove the dust. If the latter, the solute effects the viability of the phagocyte, which becomes less able to detach itself. At the same time the solute diffuses into the neighbouring tissues, with irritation to them, and consequent fibrosis.8. The more soluble form of a substance causes greater pulmonary damage than the less soluble. The solute, therefore, plays a large part in the determination of damage.9. While many dusts cause pulmonary fibrosis, silica is the dust par excellence predisposing to tuberculosis. This is doubtless due to its influence in forming a medium suitable not only for the survival but the proliferation of the tubercle bacillus in the lung (Kettle, private communication). The harmful effects of soluble silica may be neutralised by simultaneous administration of basic dusts such as aluminium hydroxide or magnesium carbonate, though the latter are themselves harmful when inhaled alone. It is suggested that their respective solutes combine to form monosilicate. Monosilicates do not appear to have any harmful effect on the lung.10. Heavy inhalations of any dust are liable to cause pulmonary damage.11. The intensity of the initial pulmonary reaction to a dust is very generally in inverse ratio to the degree of eventual damage caused by the dust.


2012 ◽  
Vol 9 (1) ◽  
pp. 153-159 ◽  
Author(s):  
Baghdad Science Journal

Equilibrium adsorption isotherm for the removal of trifluralin from aqueous solutions using ? –alumina clay has been studied. The result shows that the isotherms were S3 according Giels classification. The effects of various experimental parameters such as contact time, adsorbent dosage, effect of pH and temperature of trifluralin on the adsorption capacities have been investigated. The adsorption isotherms were obtained by obeying freundlich adsorption isotherm with (R2 = 0.91249-0.8149). The thermodynamic parameters have been calculated by using the adsorption process at five different temperature, the values of ?H, ?G and ?S were (_1.0625) kj. mol-1, (7.628 - 7.831) kj.mol-1 and (_2.7966 - _2.9162) kg. k-1. mol-1 respectively. The kinetic study of adsorption process has been studied depending on three kinetic equations: 1- Allergen equation 2- Morris –weber eguation 3- Reichenberg eguation. In general, the result shows the isotherm were on ?- alumina according to Giels classification.? –alumina and thermodynamic


2010 ◽  
Vol 7 (1) ◽  
pp. 745-756
Author(s):  
Baghdad Science Journal

The subject of this research involves studying adsorption to remove hexavalent chromium Cr(VI) from aqueous solutions. Adsorption process on bentonite clay as adsorbent was used in the Cr(VI) concentration range (10-100) ppm at different temperatures (298, 303, 308 and 313)K, for different periods of time. The adsorption isotherms were obtained by obeying Langmuir and Freundlich adsorption isotherm with R2 (0.9921-0.9060) and (0.994-0.9998), respectively. The thermodynamic parameters were calculated by using the adsorption process at four different temperatures the values of ?H, ?G and ?S was [(+6.582 ? +6.547) kJ.mol-1, (-284.560 ? -343.070) kJ.mol-1 and (+0.977 ? +1.117) kJ.K-1.mol-1] respectively. This data indicates the spontaneous sorption process. The kinetic study of adsorption process was studied depending on three kinetic equations: 1- Lagergren equation 2- Morris-Weber equation 3- Reichenberg equation


Daxue Huaxue ◽  
2015 ◽  
Vol 30 (3) ◽  
pp. 76-79
Author(s):  
Shi Jibin ◽  
◽  
◽  
Liu Guojie

Sign in / Sign up

Export Citation Format

Share Document