scholarly journals Complex effect of recess depth in nozzle design on the discharge coefficient

Author(s):  
A. N. Sabirzyanov ◽  
A. N. Kirillova

We used contemporary computational fluid dynamics techniques to evaluate how the geometric parameters of a recessed nozzle affect the perfection of flow processes. We verified our numerical simulation and obtained acceptable agreement between numerical and experimental investigation results in terms of specific impulse loss. We plotted the discharge coefficient as a function of the geometrical parameters of a recessed nozzle. Our numerical investigation forms the basis of certain guidelines we developed for designing arc-based recessed nozzles.

2013 ◽  
Vol 461 ◽  
pp. 984-992 ◽  
Author(s):  
Qiu Zhan Zhou ◽  
Da Yi Li ◽  
Yu Jiang Wang

A fluid dynamics model of electrolyte in mircroflow inspired by hemodynamic model of aortic is proposed and applied in the self-noise analysis of four-electrode microflow-electrochemical accelerometer. Three-dimensional finite element model is established and invested through numerical simulation, the variety of geometrical parameters on different location of electrode and varied time are considered, which can affect the microflow-electrochemical accelerometers self-noise. The result of numerical simulation indicates that, self-noise is related to electrode configuration as well as electrode geometrical parameters. In particular, convection-induced self-noise is correlated to variety of viscosity, and thermohydrodynamic self-noise is correlated to variety of diameter. Such a fluid dynamics model of electrolyte inspired by thermodynamics model can be also used for optimization of the self-noise.


Author(s):  
Da Wang ◽  
Yanhua Lai ◽  
Hongxia Zhao ◽  
Binguang Jia ◽  
Qiang Wang ◽  
...  

AbstractThe numerical simulation model of forced-air cooling of strawberries in a clamshell and a box was established by using computational fluid dynamics method. The cooling process of the simulation and the experiment results agreed well in different conditions, indicating that the simulation model was validated. The results showed that the 7/8 cooling time was 180 min, 135 min, 108 min and 100 min and the cooling uniformity coefficients were 0.31, 0.22, 0.24, 0.26 when the diameters of B-vent(the vent on the box) were 30 mm, 40 mm, 50 mm, 60 mm, respectively. The 7/8 cooling time decreased and the cooling uniformity coefficient improved, when the shape of C-vent (the vent on the clamshell) changed from round to rectangular. The 7/8 cooling time also deceased and the cooling uniformity coefficient increased, when the area of C-vent with both round and rectangular shapes increased. These results indicate that both B-vent and C-vent had significant effect on reducing the cooling time and the improving cooling uniformity for strawberries, It is suggested that the optimized vent ratio of B-vent (the diameter is 40 mm) and C-vent (15 mm round or 20 mm × 15 mm rectangular) for the current commercial packaged strawberries were 9.4 % and 8.5 %, respectively.


Sign in / Sign up

Export Citation Format

Share Document