scholarly journals Shunt Compensaton of the Integrated Nigeria’s 330KV Transimission Grid System

Author(s):  
Engr. Obi, Fortunatus Uche ◽  
Aghara, Jachimma ◽  
Prof. Atuchukwu John

The Nigerian Power system is complex and dynamic, as a result of this it is characterized by frequent faults and outages resulting to none steady supply of power to the teaming consumers. This has great effect on the activities and mode of living of Nigerians. The research work was carried out on contingency analysis on the existing integrated 330KV Nigeria grid system and to carry out a shunt compensation on the violated buses, the shutdown of Eket-Ibom line being the case study so as to determine the following; uncertainties and effects of changes in the power system, to recognize limitations that can affect the power reliability and minimize the sudden increase or decrease in the voltage profile of the buses through shunt compensation of buses. Determine tolerable voltages and thermal violation of +5% and -5% of base voltage 330 KV (0.95-1.05) PU and to determine the critical nature and importance of some buses. This is aimed at bridging the gap of proposing further expansion of the grid system which is not only limited by huge sum of finance and difficulties in finding right – of- way for new lines but also which faces the challenges of fixed land and longtime of construction. The data of the network was gotten and modeled. The power flow and contingency analysis of the integrated Nigeria power system of 51 buses (consisting of 16 generators and 35 loads) and 73 transmission lines were carried out using Newton-Raphson Load Flow (NRLF) method in Matlab environment, simulated with PSAT software. Shunt compensation of the weak buses were done using Static Var Compensator (SVC) with Thyristor Controlled Reactor- Fixed capacitor (TCR-FC) technique. Results obtained showed that the average voltage for base simulation was 326.25KV, contingency 323.67KV and compensation was 322.37 KV. Voltage violations for lower limit were observed at Itu as 309KV and Eket as 306.81 KV while violations for upper limit were recorded at Damaturu as 352.85KV, Yola as 353.62 KV, Gombe as 355.98KV, and Jos as 342.97 KV. However after shunt compensation there were improvements for the violations at lower limits and that of higher limit were drastically brought down as recorded below: Damaturu 329.93 KV, Jos 330 KV, Eket 327.2 KV, Gombe 333.55KV, Itu 330KV, and Yola 330.52KV

Author(s):  
Mahmood Khalid Zarkani ◽  
Ahmed Sahib Tukkee ◽  
Mohammed Jasim Alali

<p>The rapid and enormous growths of the power electronics industries have made the flexible AC transmission system (FACTS) devices efficient and viable for utility application to increase power system operation controllability as well as flexibility. This research work presents the application of an evolutionary algorithm namely differential evolution (DE) approach to optimize the location and size of three main types of FACTS devices in order to minimize the power system losses as well as improving the network voltage profile. The utilized system has been reactively loaded beginning from the base to 150% and the system performance is analyzed with and without FACTS devices in order to confirm its importance within the power system. Thyristor controlled series capacitor (TCSC), unified power flow controller (UPFC) and static var compensator (SVC) are used in this research work to monitor the active and reactive power of the carried out system. The adopted algorithm has been examined on IEEE 30-bus test system. The obtained research findings are given with appropriate discussion and considered as quite encouraging that will be valuable in electrical grid restructuring.</p>


Author(s):  
Ajith M ◽  
Dr. R. Rajeswari

Power-flow studies are of great significance in planning and designing the future expansion of power systems as well as in determining the best operation of existing systems. Technologies such as renewables and power electronics are aiding in power conversion and control, thus making the power system massive, complex, and dynamic. HVDC is being preferred due to limitations in HVAC such as reactive power loss, stability, current carrying capacity, operation and control. The HVDC system is being used for bulk power transmission over long distances with minimum losses using overhead transmission lines or submarine cable crossings. Recent years have witnessed an unprecedented growth in the number of the HVDC projects. Due to the vast size and inaccessibility of transmission systems, real time testing can prove to be difficult. Thus analyzing power system stability through computer modeling and simulation proves to be a viable solution in this case. The motivation of this project is to construct and analyze the load flow and short circuit behavior in an IEEE 14 bus power system with DC link using MATLAB software. This involves determining the parameters for converter transformer, rectifier, inverter and DC cable for modelling the DC link. The line chosen for incorporation of DC link is a weak bus. This project gives the results of load flow and along with comparison of reactive power flow, system losses, voltage in an AC and an AC-DC system.


2013 ◽  
Vol 62 (1) ◽  
pp. 91-110 ◽  
Author(s):  
S. Sreejith ◽  
Sishaj Psimon ◽  
M.P. Selvan

Abstract This paper proposes a methodology based on installation cost for locating the optimal position of interline power flow controller (IPFC) in a power system network. Here both conventional and non conventional optimization tools such as LR and ABC are applied. This methodology is formulated mathematically based on installation cost of the FACTS device and active power generation cost. The capability of IPFC to control the real and reactive power simultaneously in multiple transmission lines is exploited here. Apart from locating the optimal position of IPFC, this algorithm is used to find the optimal dispatch of the generating units and the optimal value of IPFC parameters. IPFC is modeled using Power Injection (PI) model and incorporated into the problem formulation. This proposed method is compared with that of conventional LR method by validating on standard test systems like 5-bus, IEEE 30-bus and IEEE 118-bus systems. A detailed discussion on power flow and voltage profile improvement is carried out which reveals that incorporating IPFC into power system network in its optimal location significantly enhance the load margin as well as the reliability of the system.


2020 ◽  
Vol 2 (1) ◽  
pp. 75-80
Author(s):  
Ganesh Bhandari ◽  
Bishal Rimal ◽  
Sandeep Neupane

 Power is an essential requirement for the economic development of any country. To maintain the generation of electric power at an adequate level the power has to be transmitted in a proper form to the consumer. For determination of line losses, voltage profiles and expansion of system, load flow analysis is most essential tools. This paper deals with the impact analysis of new 220 kV and 400 kV lines on Interconnected Nepal Power System (132 kV grid) in Electrical Transient Analyzer Program (ETAP). It represents the present scenario of the power system of Nepal and their impact analysis. Load flow result of existing 132 kV line shows that there is about 44.56 MW active power losses in the transmission line before any compensation techniques. After the Optimal Capacitor Placement, in the existing transmission line the active power loss decreases to about 34.224 MW as well as the voltage profile at each bus improves. The load flow result of the under construction 220 kV and 400 kV lines on the existing line shows that the total system loss would decrease to about 27.445 MW with the voltage profile improvement. The simulated model, result and analysis are presented in this paper.


With the globalization of power market by reducing the installation and operating cost of the power plant with profitable power flow controller leads to successful implementation of optimal power flow through optimal algorithms. Finding the solution of optimal load flow problem with non-linear equation such as Newton’s equation is one of the possible solution. However, applying Newton’s solution to OPF for finding convergence is a little bit tedious and time consuming affecting marginal losses by involving a number of inequalities present in the system. Transmission lines capacity and bus voltage limit are vital safety factors to carry out OPF in any power system The system being operational in normal state is equipped with security measures in order to discern that it is capable of resisting contingencies devoid of any limit contravention . To ensure a consistent power system function, it is essential that the safety of the system is duly accounted for in


Author(s):  
I. A. Ethmane ◽  
M. Maaroufi ◽  
A. K. Mahmoud ◽  
A. Yahfdhou

Load flow studies are one of the most important aspects of power system planning and operation. The main information obtained from this study comprises the magnitudes and phase angles of load bus voltages, reactive powers at generators buses, real and reactive power flow on transmission lines, other variables being known. To solve the problem of load flow, we use the iterative method, of Newton-Raphson. Analysis of the found results using numerical method programmed on the Matlab software and PSS/E Simulator lead us to seek means of controlling the reactive powers and the bus voltages of the Nouakchott power grid in 2030 year. In our case, we projected the demand forecast at 2015 to 2030 years. To solve the growing demand we injected the power plants in the system firstly and secondly when the production and energy demand are difficult to match due to lack of energy infrastructures in 2030.It is proposed to install a FACTS (Flexible Alternative Current Transmission Systems) system at these buses to compensate or provide reactive power in order to maintain a better voltage profile and transmit more power to customers.


Power system is the assembly of electrical networks, generating stations and different load centers. Load demand on the power system varies with respect to time parameter. Therefore more and more power requirements occur due to the power consumption. This can be achieved either by increasing the power carrying capability or by the re-evaluation of the electrical networks. It is observed that re-evaluation of the power system network is costlier than that of increasing the power transfer capability. In this research work a review of the salient features of power flow with thyristor controlled series capacitors are elegantly discussed. PSCAD-4.0 / MATLAB Program are used to observe how active and reactive power flow varied with different variable parameters and set of data. For each set of data, output result is obtained. Load flow solution of a 6-bus network by using Newton-Raphson method for control of power flow with TCSC (thyristor controlled series capacitor), in which the original 6-bus network is modified to 7-bus network to accommodate one TCSC / two TCSC. The load flow solution is found for the modified 6-bus / 7-bus network. The result of load flow solution shows that active power flow is controlled by TCSC. The salient feature of the research work is the fact that MATLAB and PSCAD-4.0 has been thoroughly used to investigate the different aspects of power flow control.


2021 ◽  
Vol 5 (1) ◽  
pp. 73-79
Author(s):  
Ali Abdulqadir Rasool ◽  
Najimaldin M. Abbas ◽  
Kamal Sheikhyounis

In this paper, analysis and ranking of single contingency due to the outage of transmission lines for a large scale power system of the Kurdistan Region (KR) are presented. Power System Simulator software (PSS®E33) is used to simulate the Kurdistan Region power system network and perform the contingency analysis for single line outage. This analysis is essential in order to predict and evaluate the voltage stability in case of contingency occurrence to know the most severe case and plan for managing it. All possible transmission line outages of the network are tested individually. After each branch disconnects, load flow analysis are applied by using Newton Raphson method then all bus voltages are recorded, and compared with them before the contingency. Voltage performance index is calculated for all possible contingencies to rank them according to their severity and determine the most severe contingency which is corresponding to the highest value of performance index. Also, the contingencies which cause load loss and amount of this load are observed.


2022 ◽  
Vol 28 (1) ◽  
pp. 52-64
Author(s):  
Truska Khalid Mohammed Salih ◽  
Zozan Saadallah Hussain ◽  
Firas Saaduldeen Ahmed

Nowadays power systems are huge networks that consist of electrical energy sources, static and lumped load components, connected over long distances by A.C. transmission lines. Voltage improvement is an important aspect of the power system. If the issue is not dealt with properly, may lead to voltage collapse.  In this paper, HVDC links/bipolar connections were inserted in a power system in order to improve the voltage profile. The load flow was simulated by Electrical Transient Analyzer Program (ETAP.16) program in which Newton- Raphson method is used. The load flow simulation studies show a significant enhancement of the power system performance after applying HVDC links on Kurdistan power systems. The bus voltages are significantly increased after connecting High Voltage Direct Current.


In power systems, voltage stability perform the major role in design and its operation. Major system failures are occur due to voltage variability and breakdown. To meet and compensate the rising power demand of regular usage in modern trends, transmission networks are enormously loaded which create the voltage instability. Contingency analysis is a recognized energy managing tool. It calculate the violation in the transmission line. In this paper a computational controller fuzzy system is suggested to handle the transmission line outage and overload in other branch kind of problems in Power system. The efficiency of power transmission system with fuzzy controller is inveterate by computation of various parameters of transmission bus under different loading situations. For the contingency analysis the transmission power flow several methods have been developed. Fast Decoupled load flow program is the effective method which provides a fast and effective solution to the contingency analysis in the transmission system and also it is incorporate with matrix alteration formula which gives additional advantage for the system.


Sign in / Sign up

Export Citation Format

Share Document