scholarly journals Power Transfer Capacity Achievement using Thyristor Controlled Series Capacitor

Power system is the assembly of electrical networks, generating stations and different load centers. Load demand on the power system varies with respect to time parameter. Therefore more and more power requirements occur due to the power consumption. This can be achieved either by increasing the power carrying capability or by the re-evaluation of the electrical networks. It is observed that re-evaluation of the power system network is costlier than that of increasing the power transfer capability. In this research work a review of the salient features of power flow with thyristor controlled series capacitors are elegantly discussed. PSCAD-4.0 / MATLAB Program are used to observe how active and reactive power flow varied with different variable parameters and set of data. For each set of data, output result is obtained. Load flow solution of a 6-bus network by using Newton-Raphson method for control of power flow with TCSC (thyristor controlled series capacitor), in which the original 6-bus network is modified to 7-bus network to accommodate one TCSC / two TCSC. The load flow solution is found for the modified 6-bus / 7-bus network. The result of load flow solution shows that active power flow is controlled by TCSC. The salient feature of the research work is the fact that MATLAB and PSCAD-4.0 has been thoroughly used to investigate the different aspects of power flow control.

Author(s):  
Engr. Obi, Fortunatus Uche ◽  
Aghara, Jachimma ◽  
Prof. Atuchukwu John

The Nigerian Power system is complex and dynamic, as a result of this it is characterized by frequent faults and outages resulting to none steady supply of power to the teaming consumers. This has great effect on the activities and mode of living of Nigerians. The research work was carried out on contingency analysis on the existing integrated 330KV Nigeria grid system and to carry out a shunt compensation on the violated buses, the shutdown of Eket-Ibom line being the case study so as to determine the following; uncertainties and effects of changes in the power system, to recognize limitations that can affect the power reliability and minimize the sudden increase or decrease in the voltage profile of the buses through shunt compensation of buses. Determine tolerable voltages and thermal violation of +5% and -5% of base voltage 330 KV (0.95-1.05) PU and to determine the critical nature and importance of some buses. This is aimed at bridging the gap of proposing further expansion of the grid system which is not only limited by huge sum of finance and difficulties in finding right – of- way for new lines but also which faces the challenges of fixed land and longtime of construction. The data of the network was gotten and modeled. The power flow and contingency analysis of the integrated Nigeria power system of 51 buses (consisting of 16 generators and 35 loads) and 73 transmission lines were carried out using Newton-Raphson Load Flow (NRLF) method in Matlab environment, simulated with PSAT software. Shunt compensation of the weak buses were done using Static Var Compensator (SVC) with Thyristor Controlled Reactor- Fixed capacitor (TCR-FC) technique. Results obtained showed that the average voltage for base simulation was 326.25KV, contingency 323.67KV and compensation was 322.37 KV. Voltage violations for lower limit were observed at Itu as 309KV and Eket as 306.81 KV while violations for upper limit were recorded at Damaturu as 352.85KV, Yola as 353.62 KV, Gombe as 355.98KV, and Jos as 342.97 KV. However after shunt compensation there were improvements for the violations at lower limits and that of higher limit were drastically brought down as recorded below: Damaturu 329.93 KV, Jos 330 KV, Eket 327.2 KV, Gombe 333.55KV, Itu 330KV, and Yola 330.52KV


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 148
Author(s):  
Lili Wu ◽  
Ganesh K. Venayagamoorthy ◽  
Jinfeng Gao

Power system steady-state security relates to its robustness under a normal state as well as to withstanding foreseeable contingencies without interruption to customer service. In this study, a novel cellular computation network (CCN) and hierarchical cellular rule-based fuzzy system (HCRFS) based online situation awareness method regarding steady-state security was proposed. A CCN-based two-layer mechanism was applied for voltage and active power flow prediction. HCRFS block was applied after the CCN prediction block to generate the security level of the power system. The security status of the power system was visualized online through a geographic two-dimensional visualization mechanism for voltage magnitude and load flow. In order to test the performance of the proposed method, three types of neural networks were embedded in CCN cells successively to analyze the characteristics of the proposed methodology under white noise simulated small disturbance and single contingency. Results show that the proposed CCN and HCRFS combined situation awareness method could predict the system security of the power system with high accuracy under both small disturbance and contingencies.


2015 ◽  
Vol 740 ◽  
pp. 438-441 ◽  
Author(s):  
Wei Zheng ◽  
Fang Yang ◽  
Zheng Dao Liu

The power flow calculation is study the steady-state operation of the power system as basic electrical calculations. It is given the power system network topology, device parameters and determines system health boundary conditions, draw a detailed operating status of the power system through numerical simulation methods, such as voltage amplitude and phase angle on the bus system the power distribution and the power loss. Flow calculation is the power system operation, planning and safety, reliability analysis, is fundamental to the system voltage regulation, network reconfiguration and reactive power optimization must call the function, so the trend has very important significance to calculate the power system.


2012 ◽  
Vol 433-440 ◽  
pp. 7208-7212
Author(s):  
Ya Min Su Hlaing ◽  
Ze Ya Aung

This thesis implements power flow application, Newton-Raphson method. The Newton-Raphson method is mainly employed in the solution of power flow problems. The network of Myanma electric power system is used as the reference case. The system network contains 90 buses and 106 brunches. The weak points are found in the network by using Newton-Raphson method. Bus 16, 17, 85 and 86 have the most weak bus voltages. The medium transmission line between bus 87 and bus 17 is compensated by using MATLAB program software. The transmission line is compensated with shunt reactors, series and shunt capacitors to improve transient and steady-state stability, more economical loading, and minimum voltage dip on load buses and to supply the requisite reactive power to maintain the receiving end voltage at a satisfactory level. The system performance is tested under steady-state condition. This paper investigates and improves the steady–state operation of Myanma Power System Network.


2011 ◽  
Vol 403-408 ◽  
pp. 4926-4933
Author(s):  
Laxmidhar Sahu ◽  
Jose. P. Therattil ◽  
P. C. Panda

The continuous change in power demand and supply altered the power flow patterns in transmission networks in such a way that some of the corridors are lightly loaded and some of the corridors get over loaded. This raises serious challenge in operating the power system in secure and reliable manner. To cope with this problem Flexible AC Transmission Systems (FACTS) is used. It plays a very important role in improving the power system operating performance. In this paper load flow models for STATCOM and SVC have been developed. Power flow study of a five bus system is carried out with and without FACTS controllers. Results of the power flow studies are obtained with MATLAB programming.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2250
Author(s):  
Minh-Chau Dinh ◽  
Minh-Quan Tran ◽  
Jae-In Lee ◽  
Seok-Ju Lee ◽  
Chur Hee Lee ◽  
...  

A thyristor-controlled series capacitor (TCSC) is employed to a transmission line in order to enhance the usable capacity of the present as well as upgraded lines, improve system stability, reduce losses, and improve power flow control capability. However, in an abnormal situation, the TCSC may transit from the existing operation mode to the other mode according to its control system and protection strategy. There is much difference in the impedance of the TCSC between each mode. This threatens the reliability of the conventional protection system, especially the distance relay, that works based on the measurement of line impedance. In this paper, we suggest a new protection scheme for a distance relay of a transmission line equipped with a TCSC. In the suggested method, in order to mitigate the effect of the TCSC in the fault loop, the TCSC injected voltage is subtracted from the measured phase voltage before supplying the voltage signal to the distance relay. The suggested scheme was verified by a real time digital simulator (RTDS)-based closed-loop test bed of a protective relay. The effect of the TCSC in the fault loop was completely mitigated. The distance relay works properly with the suggested scheme.


Sign in / Sign up

Export Citation Format

Share Document