Ceramic technology, environment & residential mobility in small scale groups

2012 ◽  
Vol 2012 (3) ◽  
pp. 1-12
Author(s):  
Fernando Franchetti ◽  
Nuria Sugrañes
2013 ◽  
Vol 368 (1630) ◽  
pp. 20120412 ◽  
Author(s):  
Mark Collard ◽  
Briggs Buchanan ◽  
Michael J. O'Brien ◽  
Jonathan Scholnick

Identifying factors that influence technological evolution in small-scale societies is important for understanding human evolution. There have been a number of attempts to identify factors that influence the evolution of food-getting technology, but little work has examined the factors that affect the evolution of other technologies. Here, we focus on variation in technological richness (total number of material items and techniques) among recent hunter–gatherers from western North America and test three hypotheses: (i) technological richness is affected by environmental risk, (ii) population size is the primary determinant of technological richness, and (iii) technological richness is constrained by residential mobility. We found technological richness to be correlated with a proxy for environmental risk—mean rainfall for the driest month—in the manner predicted by the risk hypothesis. Support for the hypothesis persisted when we controlled for shared history and intergroup contact. We found no evidence that technological richness is affected by population size or residential mobility. These results have important implications for unravelling the complexities of technological evolution.


2016 ◽  
Vol 81 (4) ◽  
pp. 645-663 ◽  
Author(s):  
Camilla Sturm ◽  
Julia K. Clark ◽  
Loukas Barton

Explanations for the use of pots as practical domestic tools permeate the literature of technological adoption and change. While many arguments focus on the economic merits of pots, few have attempted to trace the conditions that promote or deter the adoption of pottery. This is especially true for the use of pottery by mobile peoples. We adapt an established model of technological investment to draw attention to three key variables affecting pottery adoption: manufacturing time, utility, and use time. We use the logic of this model to examine how social and environmental contexts, specifically residential mobility in marginal environments, impacts use of and investment in ceramic technology. We further illustrate how the model can be used to reveal seasonal patterns of behavior from the spatial distribution of pottery discarded by mobile foragers and herders.


2019 ◽  
Vol 42 ◽  
Author(s):  
William Buckner ◽  
Luke Glowacki

Abstract De Dreu and Gross predict that attackers will have more difficulty winning conflicts than defenders. As their analysis is presumed to capture the dynamics of decentralized conflict, we consider how their framework compares with ethnographic evidence from small-scale societies, as well as chimpanzee patterns of intergroup conflict. In these contexts, attackers have significantly more success in conflict than predicted by De Dreu and Gross's model. We discuss the possible reasons for this disparity.


2000 ◽  
Vol 179 ◽  
pp. 403-406
Author(s):  
M. Karovska ◽  
B. Wood ◽  
J. Chen ◽  
J. Cook ◽  
R. Howard

AbstractWe applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


Author(s):  
R. Gronsky

It is now well established that the phase transformation behavior of YBa2Cu3O6+δ is significantly influenced by matrix strain effects, as evidenced by the formation of accommodation twins, the occurrence of diffuse scattering in diffraction patterns, the appearance of tweed contrast in electron micrographs, and the generation of displacive modulation superstructures, all of which have been successfully modeled via simple Monte Carlo simulations. The model is based upon a static lattice formulation with two types of excitations, one of which is a change in oxygen occupancy, and the other a small displacement of both the copper and oxygen sublattices. Results of these simulations show that a displacive superstructure forms very rapidly in a morphology of finely textured domains, followed by domain growth and a more sharply defined modulation wavelength, ultimately evolving into a strong <110> tweed with 5 nm to 7 nm period. What is new about these findings is the revelation that both the small-scale deformation superstructures and coarser tweed morphologies can result from displacive modulations in ordered YBa2Cu3O6+δ and need not be restricted to domain coarsening of the disordered phase. Figures 1 and 2 show a representative image and diffraction pattern for fully-ordered (δ = 1) YBa2Cu3O6+δ associated with a long-period <110> modulation.


2006 ◽  
Vol 37 (3) ◽  
pp. 131-139 ◽  
Author(s):  
Juliane Degner ◽  
Dirk Wentura ◽  
Klaus Rothermund

Abstract: We review research on response-latency based (“implicit”) measures of attitudes by examining what hopes and intentions researchers have associated with their usage. We identified the hopes of (1) gaining better measures of interindividual differences in attitudes as compared to self-report measures (quality hope); (2) better predicting behavior, or predicting other behaviors, as compared to self-reports (incremental validity hope); (3) linking social-cognitive theories more adequately to empirical research (theory-link hope). We argue that the third hope should be the starting point for using these measures. Any attempt to improve these measures should include the search for a small-scale theory that adequately explains the basic effects found with such a measure. To date, small-scale theories for different measures are not equally well developed.


2000 ◽  
Vol 45 (4) ◽  
pp. 396-398
Author(s):  
Roger Smith
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document