scholarly journals Effect of Exercise Training on Adiponectin Receptor Expression and Insulin Resistance in Mice Fed a High Fat Diet

2010 ◽  
Vol 6 (2) ◽  
pp. 77-83 ◽  
Author(s):  
Alhusseini
2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Tianyi Wang ◽  
Song Huang ◽  
Xiao Han ◽  
Sujuan Liu ◽  
Yanmei Niu ◽  
...  

Objective Obesity is becoming increasingly prevalent and is an important contributor to the worldwide burden of diseases. It is widely accepted that exercise training is beneficial for the prevention and treatment of obesity. However, the underlying mechanism by which exercise training improving skeletal muscle lipid metabolism is still not fully described. Sestrins (Sestrin1-3) are highly conserved stress-inducible protein. Concomitant ablation of Sestrin2 and Sestrin3 has been reported to provoke hepatic mTORC1/S6K1 activation and insulin resistance even without nutritional overload and obesity, implicating that Sestrin2 and Sestrin3 have an important homeostatic function in the control of mammalian glucose and lipid metabolism. Our previous results demonstrated that physical exercise increased Sestrin2 expression in murine skeletal muscle, while the role of Sestrin2 in regulating lipid metabolism remains unknown.  SH2 domain containing inositol 5-phosphatase (SHIP2) acts as a negative regulator of the insulin signaling both in vitro and in vivo. An increased expression of SHIP2 inhibits the insulin-induced Akt activation, glucose uptake, and glycogen synthesis in 3T3-L1 adipocytes, L6 myotubes and tissues of animal models. Alterations of SHIP2 expression and/or enzymatic function appear to have a profound impact on the development of insulin resistance. However, the regulatory function of SHIP2 in lipid metabolism after exercise remains unclear. It has been reported that SHIP2 modulated lipid metabolism through regulating the activity of c-Jun N-terminal kinase (JNK) and Sterol regulatory element-binding protein-1 (SREBP-1). JNK is a subclass of mitogen-activated protein kinase (MAPK) signaling pathway in mammalian cells and plays a crucial role in metabolic changes and inflammation associated with a high-fat diet. Inhibition of JNK reduces lipid deposition and proteins level of fatty acid de novo synthesis in liver cells. It has been reported that Sestrin2 regulated the phosphorylation of JNK, however the underlying mechanism remains unclear. SREBP-1 is important in regulating cholesterol biosynthesis and uptake and fatty acid biosynthesis, and SREBP-1 expression produces two different isoforms, SREBP-1a and SREBP-1c. SREBP-1c is responsible for regulating the genes required for de novo lipogenesis and its expression is regulated by insulin. SREBP-1a regulates genes related to lipid and cholesterol production and its activity is regulated by sterol levels in the cell. Altogether, the purpose of this study was to explore the effect and underlying mechanism of Sestrin2 on lipid accumulation after exercise training. Methods Male wild type and SESN2−/− mice were divided into normal chow (NC) and high-fat diet (HFD) groups to create insulin resistance mice model. After 8 weeks the IR model group was then divided into HFD sedentary control and HFD exercise groups (HE). Mice in HE group underwent 6-week treadmill exercise to reveal the effect of exercise training on lipid metabolism in insulin resistance model induced by HFD. We explored the mechanism through which Sestrin2 regulated lipid metabolism in vitro by supplying palmitate, overexpressing or inhibiting SESNs, SHIP2 and JNK in myotubes. Results We found that 6-week exercise training decreased body weight, BMI and fat mass in wild type and SESN2-/- mice after high-fat diet (HFD) feeding. And exercise training decreased the level of plasma glucose, serum insulin, triglycerides and free fatty acids in wild type but not in Sestrin2-/- mice. Lipid droplet in skeletal muscle was also decreased in wild type but did not in Sestrin2-/- mice. Moreover, exercise training increased the proteins expression involved in fatty acid oxidation and decreased the proteins which related to fatty acid de novo synthesis. The results of oil red staining and the change of proteins related to fatty acid de novo synthesis and beta oxidation in myotubes treated with palmitate, Ad-SESN2 and siRNA-Sestrin2 were consisted with the results in vivo, which suggested that Sestrin2 was a key regulator in lipid metabolism. Exercise training increased Sestrin2 expression and reversed up-regulation of SHIP2 and pJNK induced by HFD in wild type mice but not in Sestrin2-/- mice. In parallel, overexpression of Sestrin2 decreased the level of SHIP2 and pJNK induced by palmitate while Sestrin2 knock down by siRNA-Sestrin2 treatment did not change the expression of SHIP2 and pJNK, which suggested that Sestrin2 modulated SHIP2 and JNK in the state of abnormal lipid metabolism. Inhibition of SHIP2 reduced the activity of JNK, increased lipid accumulation and the proteins of fatty acid synthesis after palmitate treatment and over expression of Sestrin2, which suggest that Sestrin2 modulated lipid metabolism through SHIP2/JNK pathway. Conclusions Sestrin2 plays an important role in improving lipid metabolism after exercise training, and Sestrin2 regulates lipid metabolism by SHIP2-JNK pathway in skeletal muscle.


2020 ◽  
Vol 318 (4) ◽  
pp. E492-E503
Author(s):  
Kenichi Tanaka ◽  
Hirokazu Takahashi ◽  
Sayaka Katagiri ◽  
Kazuyo Sasaki ◽  
Yujin Ohsugi ◽  
...  

Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been reported to improve obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD) in addition to exercise training, whereas the combined effects remain to be elucidated fully. We investigated the effect of the combination of the SGLT2i canagliflozin (CAN) and exercise training in high-fat diet-induced obese mice. High-fat diet-fed mice were housed in normal cages (sedentary; Sed) or wheel cages (WCR) with or without CAN (0.03% of diet) for 4 wk. The effects on obesity, glucose metabolism, and hepatic steatosis were evaluated in four groups (Control/Sed, Control/WCR, CAN/Sed, and CAN/WCR). Numerically additive improvements were found in body weight, body fat mass, blood glucose, glucose intolerance, insulin resistance, and the fatty liver of the CAN/WCR group, whereas CAN increased food intake and reduced running distance. Exercise training alone, CAN alone, or both did not change the weight of skeletal muscle, but microarray analysis showed that each resulted in a characteristic change of gene expression in gastrocnemius muscle. In particular, in the CAN/WCR group, there was acceleration of the angiogenesis pathway and suppression of the adipogenesis pathway compared with the CAN/Sed group. In conclusion, the combination of an SGLT2i and exercise training improves obesity, insulin resistance, and NAFLD in an additive manner. Changes of gene expression in skeletal muscle may contribute, at least in part, to the improvement of obesity and insulin sensitivity.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 249
Author(s):  
Jong Ryeal Hahm ◽  
Myeung Hoon Jo ◽  
Rahat Ullah ◽  
Min Woo Kim ◽  
Myeong Ok Kim

Oxidative stress and insulin resistance play major roles in numerous neurodegenerative diseases, including Alzheimer’s disease (AD). A high-fat diet induces obesity-associated oxidative stress, neuronal insulin resistance, microglial activation, and neuroinflammation, which are considered important risk factors for neurodegeneration. Obesity-related metabolic dysfunction is a risk factor for cognitive decline. The present study aimed to elucidate whether chronic consumption of a high-fat diet (HFD; 24 weeks) can induce insulin resistance, neuroinflammation, and amyloid beta (Aβ) deposition in mouse brains. Male C57BL/6N mice were used for a high-fat diet (HFD)-induced pre-clinical model of obesity. The protein expression levels were examined via Western blot, immunofluorescence, and the behavior analysis was performed using the Morris water maze test. To obtain metabolic parameters, insulin sensitivity and glucose tolerance tests were performed. We found that metabolic perturbations from the chronic consumption of HFD elevated neuronal oxidative stress and insulin resistance through adiponectin receptor (AdipoR1) suppression in HFD-fed mice. Similarly, our in vitro results also indicated that knockdown of AdipoR1 in the embryonic mouse hippocampal cell line mHippoE-14 leads to increased oxidative stress in neurons. In addition, HFD markedly increased neuroinflammatory markers’ glial activation in the cortex and hippocampus regions of HFD mouse brains. More importantly, we observed that AdipoR1 suppression increased the amyloidogenic pathway both in vivo and in vitro. Furthermore, deregulated synaptic proteins and behavioral deficits were observed in the HFD mouse brains. Taken together, our findings suggest that excessive consumption of an HFD has a profound impact on brain function, which involves the acceleration of cognitive impairment due to increased obesity-associated oxidative stress, insulin resistance, and neuroinflammation, which ultimately may cause early onset of Alzheimer’s pathology via the suppression of AdipoR1 signaling in the brain.


2020 ◽  
Author(s):  
Amanda J Genders ◽  
Jujiao Kuang ◽  
Evelyn C Marin ◽  
Nicholas J Saner ◽  
Javier Botella ◽  
...  

AbstractAims/hypothesisTo investigate if there is a causal relationship between changes in insulin resistance and mitochondrial respiratory function and content in rats fed a high fat diet (HFD) with or without concurrent exercise training. We hypothesised that provision of a high fat diet (HFD) would increase insulin resistance and decrease mitochondrial characteristics (content and function), and that exercise training would improve both mitochondrial characteristics and insulin resistance in rats fed a HFD.MethodsMale Wistar rats were given either a chow diet or a high fat diet (HFD) for 12 weeks. After 4 weeks of the dietary intervention, half of the rats in each group began eight weeks of interval training. In vivo glucose and insulin tolerance was assessed, as was ex vivo glucose uptake in epitrochlearis muscle. Mitochondrial respiratory function was assessed in permeabilised soleus and white gastrocnemius (WG) muscles. Mitochondrial content was determined by measurement of citrate synthase (CS) activity and protein expression of components of the electron transport system (ETS).ResultsHFD rats had impaired glucose and insulin tolerance. HFD did not change CS activity in the soleus; however, it did increase CS activity in WG (Chow 5.9 ± 0.5, HFD 7.2 ± 0.7 mol h-1 kg protein-1). Protein expression of components of the ETS and mitochondrial respiratory function (WG Chow 65.2 ± 8.4, HFD 88.6 ± 8.7 pmol O2 s-1 mg-1) were also increased by HFD. Exercise training improved glucose and insulin tolerance in the HFD rats. Exercise training did not alter CS activity in either muscle. Mitochondrial respiratory function was increased with exercise training in the chow fed animals in soleus muscle, but not in WG. This exercise effect was absent in the HFD animals. Mitochondrial characteristics did not consistently correlate with insulin or glucose tolerance.Conclusions/interpretationHFD induced insulin resistance, but it did not negatively affect any of the measured mitochondrial characteristics. Exercise training improved insulin resistance, but without changes in mitochondrial respiration and content. The lack of an association between mitochondrial characteristics and insulin resistance was reinforced by the absence of strong correlations between these measures. Our results suggest that defects in mitochondrial respiration and content are not responsible for insulin resistance in HFD rats.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Qi ◽  
Xue Luo ◽  
Zhichao Ma ◽  
Bo Zhang ◽  
Shuyan Li ◽  
...  

Nonpharmaceutical therapies such as exercise training and diet intervention are widely used for the treatment of insulin resistance (IR). Although the skeletal muscle is the major peripheral tissue of glucose metabolism under insulin stimulation, the mechanism underlying muscle IR is poorly understood. Using a high-fat diet-induced IR mouse model, we here show that NADPH oxidase 4 (Nox4) upregulation mediates the production of reactive oxygen species (ROS) that causes metabolic syndrome featuring IR. The Nox4 expression level was markedly elevated in IR mice, and Nox4 overexpression was sufficient to trigger IR. Conversely, downregulation of Nox4 expression through exercise training prevented diet-induced IR by reducing the production of ROS and enhancing the AKT signaling pathway. Thus, this study indicates that exercise might improve IR through a reduction of Nox4-induced ROS in the skeletal muscle and enhancement of AKT signal transduction.


2014 ◽  
Vol 117 (8) ◽  
pp. 869-879 ◽  
Author(s):  
Marcia J. Abbott ◽  
Lorraine P. Turcotte

AMP-activated protein kinase (AMPK) has been studied extensively and postulated to be a target for the treatment and/or prevention of metabolic disorders such as insulin resistance. Exercise training has been deemed a beneficial treatment for obesity and insulin resistance. Furthermore, exercise is a feasible method to combat high-fat diet (HFD)-induced alterations in insulin sensitivity. The purpose of this study was to determine whether AMPK-α2 activity is required to gain beneficial effects of exercise training with high-fat feeding. Wild-type (WT) and AMPK-α2 dominant-negative (DN) male mice were fed standard diet (SD), underwent voluntary wheel running (TR), fed HFD, or trained with HFD (TR + HFD). By week 6, TR, irrespective of genotype, decreased blood glucose and increased citrate synthase activity in both diet groups and decreased insulin levels in HFD groups. Hindlimb perfusions were performed, and, in WT mice with SD, TR increased insulin-mediated palmitate uptake (76.7%) and oxidation (>2-fold). These training-induced changes were not observed in the DN mice. With HFD, TR decreased palmitate oxidation (61–64%) in both WT and DN and increased palmitate uptake (112%) in the WT with no effects on palmitate uptake in the DN. With SD, TR increased ERK1/2 and JNK1/2 phosphorylation, regardless of genotype. With HFD, TR reduced JNK1/2 phosphorylation, regardless of genotype, carnitine palmitoyltransferase 1 expression in WT, and CD36 expression in both DN and WT. These data suggest that low AMPK-α2 signaling disrupts, in part, the exercise training-induced adaptations in insulin-stimulated metabolism in skeletal muscle following HFD.


Sign in / Sign up

Export Citation Format

Share Document