scholarly journals Illumina-Based De Novo Transcriptome Analysis and Identifications of Genes Involved in the Monolignol Biosynthesis Pathway in Acacia koa

2015 ◽  
Vol 4 (1) ◽  
pp. 7-27 ◽  
Author(s):  
Kazue Ishihara ◽  
Eric K.W. Lee ◽  
Isabel Rushanaedy ◽  
Dulal Borthakur
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nisha Dhiman ◽  
Anil Kumar ◽  
Dinesh Kumar ◽  
Amita Bhattacharya

Abstract The study is the first report on de novo transcriptome analysis of Nardostachys jatamansi, a critically endangered medicinal plant of alpine Himalayas. Illumina GAIIx sequencing of plants collected during end of vegetative growth (August) yielded 48,411 unigenes. 74.45% of these were annotated using UNIPROT. GO enrichment analysis, KEGG pathways and PPI network indicated simultaneous utilization of leaf photosynthates for flowering, rhizome fortification, stress response and tissue-specific secondary metabolites biosynthesis. Among the secondary metabolite biosynthesis genes, terpenoids were predominant. UPLC-PDA analysis of in vitro plants revealed temperature-dependent, tissue-specific differential distribution of various phenolics. Thus, as compared to 25 °C, the phenolic contents of both leaves (gallic acid and rutin) and roots (p-coumaric acid and cinnamic acid) were higher at 15 °C. These phenolics accounted for the therapeutic properties reported in the plant. In qRT-PCR of in vitro plants, secondary metabolite biosynthesis pathway genes showed higher expression at 15 °C and 14 h/10 h photoperiod (conditions representing end of vegetative growth period). This provided cues for in vitro modulation of identified secondary metabolites. Such modulation of secondary metabolites in in vitro systems can eliminate the need for uprooting N. jatamansi from wild. Hence, the study is a step towards effective conservation of the plant.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yuan-Ping Lu ◽  
Jian-Hua Liao ◽  
Zhong-Jie Guo ◽  
Zhi-Xin Cai ◽  
Mei-Yuan Chen

Agaricus blazei, a type of edible straw-rotting mushroom with somewhat sweet taste and fragrance of almonds, has attracted considerable scientific and practical attention. High-throughput Illumina PE150 and PacBio RSII platform were employed to generate a genomic sequence. De novo assembly generated 36 contigs with 38,686,133 bp in size, containing 10,119 putative predicted genes. Additionally, we also studied transcriptional regulation of the mycelia and the primordia for exploration of genes involved in fruiting body formation. Expression profiling analysis revealed that 2,164 genes were upregulated in mycelia and 1,557 in primordia. Functional enrichment showed that differentially expressed genes associated with response to stress, ribosome biogenesis, arginine biosynthesis, and steroid biosynthesis pathway were more active in fruiting body. The genome and transcriptome analysis of A. blazei provide valuable sequence resources and contribute to our understanding of genes related to the biosynthesis pathway of polysaccharide and benzaldehyde, as well as the fruiting body formation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muzammil Shah ◽  
Hesham F. Alharby ◽  
Khalid Rehman Hakeem ◽  
Niaz Ali ◽  
Inayat Ur Rahman ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-Cheng Chang ◽  
Yi-Ching Chiu ◽  
Nai-Wen Tsao ◽  
Yuan-Lin Chou ◽  
Choon-Meng Tan ◽  
...  

AbstractAmaranthus tricolor L., a vegetable Amaranthus species, is an economically important crop containing large amounts of betalains. Betalains are natural antioxidants and can be classified into betacyanins and betaxanthins, with red and yellow colors, respectively. A. tricolor cultivars with varying betalain contents, leading to striking red to green coloration, have been commercially produced. However, the molecular differences underlying betalain biosynthesis in various cultivars of A. tricolor remain largely unknown. In this study, A. tricolor cultivars with different colors were chosen for comparative transcriptome analysis. The elevated expression of AmCYP76AD1 in a red-leaf cultivar of A. tricolor was proposed to play a key role in producing red betalain pigments. The functions of AmCYP76AD1, AmDODAα1, AmDODAα2, and AmcDOPA5GT were also characterized through the heterologous engineering of betalain pigments in Nicotiana benthamiana. Moreover, high and low L-DOPA 4,5-dioxygenase activities of AmDODAα1 and AmDODAα2, respectively, were confirmed through in vitro enzymatic assays. Thus, comparative transcriptome analysis combined with functional and enzymatic studies allowed the construction of a core betalain biosynthesis pathway of A. tricolor. These results not only provide novel insights into betalain biosynthesis and evolution in A. tricolor but also provide a basal framework for examining genes related to betalain biosynthesis among different species of Amaranthaceae.


Gene ◽  
2018 ◽  
Vol 645 ◽  
pp. 146-156 ◽  
Author(s):  
Soumyadev Sarkar ◽  
Somnath Chakravorty ◽  
Avishek Mukherjee ◽  
Debanjana Bhattacharya ◽  
Semantee Bhattacharya ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0150273 ◽  
Author(s):  
Shivanjali Kotwal ◽  
Sanjana Kaul ◽  
Pooja Sharma ◽  
Mehak Gupta ◽  
Rama Shankar ◽  
...  

Genomics ◽  
2019 ◽  
Vol 111 (6) ◽  
pp. 1474-1482 ◽  
Author(s):  
Savita Bains ◽  
Vasundhara Thakur ◽  
Jagdeep Kaur ◽  
Kashmir Singh ◽  
Ravneet Kaur

Sign in / Sign up

Export Citation Format

Share Document