scholarly journals Dynamic Mechanical Properties of Fused Deposition Modelling Processed Polyphenylsulfone Material

2016 ◽  
Vol 9 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Bolin Huang ◽  
S.H. Masood ◽  
Mostafa Nikzad ◽  
Prabhu Raja Venugopal ◽  
Adhiyamaan Arivazhagan
2014 ◽  
Vol 7 (3) ◽  
pp. 307-315 ◽  
Author(s):  
Adhiyamaan Arivazhagan ◽  
Ammar Saleem ◽  
S. H. Masood ◽  
Mostafa Nikzad ◽  
K. A. Jagadeesh

Author(s):  
Saty Dev ◽  
Rajeev Srivastava

Fused deposition modeling (FDM) technology is catching the fast global market in the real-time production of polymeric parts. Process variables highly influence the performance characteristics of FDM-generated parts, so mechanical performance is not perfect for all applications. In actual conditions, parts produced by FDM are constantly subjected to loading at different temperatures. The former studies mainly concentrated on the properties of FDM products to static loading environments. There is a scope of effective investigation on the influence of FDM processing conditions on dynamic mechanical properties using artificial intelligence (AI) based techniques. The present study focused on investigation and optimization the manufacturing process parameters to evaluate the dynamic mechanical performance of FDM-produced part. The experimental runs were obtained through central composite design in Minitab software. A DMA8000 instrument was used to test the specimens for dynamic mechanical performance. The mathematical models were developed and optimized through different approaches like response surface methodology-genetic algorithm (RSM-GA) and artificial neural network-genetic algorithm (ANN-GA). The techniques for order preference by similarity to an ideal solution (TOPSIS) is employed to obtain the best parameter settings from sets of optimized solutions. The sequential use of ANN-GA and TOPSIS methods predicted the highest values of storage modulus 1619.61 MPa and loss modulus 257.38 MPa corresponding to 68.94° raster angle, 81.48% infill density, 0.10 mm layer thickness, 237.73°C nozzle temperature and 38.97 mm/s print head speed. The confirmation tests were conducted to validate the predicted result that upscale the desired properties. The RSM-GA-TOPSIS occurred with a prediction error of 2.40% and −3.31%, corresponding to storage and loss modulus. Similarly, ANN-GA-TOPSIS shows 2.17% and 2.89% prediction error corresponding to storage and loss modulus. The experimental and analytical outcome of present study will be helpful for the designers of intricate functional parts which come under thermo-mechanical loading conditions.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 297 ◽  
Author(s):  
Mateusz Galeja ◽  
Aleksander Hejna ◽  
Paulina Kosmela ◽  
Arkadiusz Kulawik

Due to the rapid growth of 3D printing popularity, including fused deposition modeling (FDM), as one of the most common technologies, the proper understanding of the process and influence of its parameters on resulting products is crucial for its development. One of the most crucial parameters of FDM printing is the raster angle and mutual arrangement of the following filament layers. Presented research work aims to evaluate different raster angles (45°, 55°, 55’°, 60° and 90°) on the static, as well as rarely investigated, dynamic mechanical properties of 3D printed acrylonitrile butadiene styrene (ABS) materials. Configuration named 55’° was based on the optimal winding angle in filament-wound pipes, which provides them exceptional mechanical performance and durability. Also in the case of 3D printed samples, it resulted in the best impact strength, comparing to other raster angles, despite relatively weaker tensile performance. Interestingly, all 3D printed samples showed surprisingly high values of impact strength considering their calculated brittleness, which provides new insights into understanding the mechanical performance of 3D printed structures. Simultaneously, it proves that, despite extensive research works related to FDM technology, there is still a lot of investigation required for a proper understanding of this process.


2015 ◽  
Vol 37 (2) ◽  
pp. 162-167
Author(s):  
V.A. Vilensky ◽  
◽  
L.V. Kobrina ◽  
S.V. Riabov ◽  
Y.Y. Kercha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document