mineralized tissues
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 46)

H-INDEX

53
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Theodore Busby ◽  
Yuechuan Chen ◽  
Tanner C. Godfrey ◽  
Mohammad Rehan ◽  
Benjamin J. Wildman ◽  
...  

Chromatin remodeling, specifically the tissue-specific regulation in mineralized tissues, is an understudied avenue of gene regulation. Here we show that Baf45a and Baf45d, two Baf45 homologs belong to ATPase-dependent SWI/SNF chromatin remodeling complex, preferentially expressed in osteoblasts and odontoblasts compared to Baf45b and Baf45c. Recently, biochemical studies revealed that BAF45A associates with Polybromo-associated BAF (PBAF) complex. However, the BAF45D subunit belongs to the polymorphic canonical BRG1-associated factor (cBAF) complex. Protein profiles of osteoblast and odontoblast differentiation uncovered a significant increase of BAF45A and PBAF subunits during early osteoblast and odontoblast maturation. Chromatin immunoprecipitation sequencing (ChIP-seq) during the bone marrow stromal cells (BMSCs) differentiation showed higher histone H3K9 and H3K27 acetylation modifications in the promoter of Baf45a and Baf45d and increased binding of bone and tooth specific transcription factor RUNX2. Overexpression of Baf45a in osteoblasts activates genes essential for the progression of osteoblast maturation and mineralization. Furthermore, shRNA-mediated knockdown of Baf45a in odontoblasts leads to markedly altered genes responsible for the proliferation, apoptosis, DNA repair, and modest decrease in dentinogenic marker gene expression. Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) assay in Baf45a knockout osteoblasts revealed a noticeable reduction in chromatin accessibility of osteoblast and odontoblast specific genes, along with transcription factor Atf4 and Klf4. Craniofacial mesenchyme-specific loss of Baf45a modestly reduced the mineralization of the tooth and mandibular bone. These findings indicated that BAF45A-dependent mineralized tissue-specific chromatin remodeling through PBAF-RUNX2 crosstalk results in transcriptional activation is critical for early differentiation and matrix maturation of mineralized tissues.


2021 ◽  
Vol 12 ◽  
Author(s):  
Oghenevwogaga J. Atake ◽  
B. Frank Eames

The impregnation of biominerals into the extracellular matrix of living organisms, a process termed biomineralization, gives rise to diverse mineralized (or calcified) tissues in vertebrates. Preservation of mineralized tissues in the fossil record has provided insights into the evolutionary history of vertebrates and their skeletons. However, current understanding of the vertebrate skeleton and of the processes underlying its formation is biased towards biomedical models such as the tetrapods mouse and chick. Chondrichthyans (sharks, skates, rays, and chimaeras) and osteichthyans are the only vertebrate groups with extant (living) representatives that have a mineralized skeleton, but the basal phylogenetic position of chondrichthyans could potentially offer unique insights into skeletal evolution. For example, bone is a vertebrate novelty, but the internal supporting skeleton (endoskeleton) of extant chondrichthyans is commonly described as lacking bone. The molecular and developmental basis for this assertion is yet to be tested. Subperichondral tissues in the endoskeleton of some chondrichthyans display mineralization patterns and histological and molecular features of bone, thereby challenging the notion that extant chondrichthyans lack endoskeletal bone. Additionally, the chondrichthyan endoskeleton demonstrates some unique features and others that are potentially homologous with other vertebrates, including a polygonal mineralization pattern, a trabecular mineralization pattern, and an unconstricted perichordal sheath. Because of the basal phylogenetic position of chondrichthyans among all other extant vertebrates with a mineralized skeleton, developmental and molecular studies of chondrichthyans are critical to flesh out the evolution of vertebrate skeletal tissues, but only a handful of such studies have been carried out to date. This review discusses morphological and molecular features of chondrichthyan endoskeletal tissues and cell types, ultimately emphasizing how comparative embryology and transcriptomics can reveal homology of mineralized skeletal tissues (and their cell types) between chondrichthyans and other vertebrates.


2021 ◽  
Author(s):  
Ian Moffat

Establishing strontium isotope (87Sr/86Sr) geographical variability is a key component of any study that seeks to utilize strontium isotopes as tracers of provenance or mobility. Although lithological maps can provide a guideline, estimations of bioavailable 87Sr/86Sr are often necessary, both in qualitative estimates of local strontium isotope “catchments” and for informing/refining isoscape models. Local soils, plants and/or animal remains are commonly included in bioavailability studies, although consensus on what (and how extensively) to sample is lacking. In this study, 96 biological samples (plants and snails) were collected at 17 locations spanning 6 lithological units, within a region of south-west France and an area with a high concentration of Paleolithic archaeological sites. Sampling sites aligned with those from a previous study on soil bioavailable strontium, and comparison with these values, and the influence of environmental and anthropogenic variables, was explored. Data confirm a broad correspondence of plant and snail 87Sr/86Sr values with lithological unit/soil values, although the correlation between expected 87Sr/86Sr values from lithology and bioavailable 87Sr/86Sr ratios from biological samples was higher for plants than for snails. Grass, shrub and tree 87Sr/86Sr values were similar but grasses had a stronger relationship with topsoil values than trees, reflecting differences in root architecture. Variability in 87Sr/86Sr ratios from all plant samples was lower for sites located on homogeneous geological substrates than for those on heterogeneous substrates, such as granite. Among environmental and anthropogenic variables, only an effect of proximity to water was detected, with increased 87Sr/86Sr values in plants from sites close to rivers originating from radiogenic bedrock. The results highlight the importance of analyzing biological samples to complement, inform and refine strontium isoscape models. The sampling of plants rather than snails is recommended, including plants of varying root depth, and (if sample size is a limitation) to collect a greater number of samples fromareas with heterogeneous geological substrates to improve the characterizations of those regions. Finally, we call for new experimental studies on the mineralized tissues of grazers, browsers, frugivores and/or tree leaf feeders to explore the influence of 87Sr/86Sr variability with soil profile/root architecture on 87Sr/86Sr values of locally-feeding fauna.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuxian Tang ◽  
Zhiyun Dong ◽  
Xiang Ke ◽  
Jun Luo ◽  
Jianshu Li

AbstractBiomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties, including the bones and teeth in vertebrates. The underlying mechanisms and pathways of biomineralization provide inspiration for designing and constructing materials to repair hard tissues. In particular, the formation processes of minerals can be partly replicated by utilizing bioinspired artificial materials to mimic the functions of biomolecules or stabilize intermediate mineral phases involved in biomineralization. Here, we review recent advances in biomineralization-inspired materials developed for hard tissue repair. Biomineralization-inspired materials are categorized into different types based on their specific applications, which include bone repair, dentin remineralization, and enamel remineralization. Finally, the advantages and limitations of these materials are summarized, and several perspectives on future directions are discussed.


Author(s):  
Marlon R. Schneider

AbstractOne hundred and twenty years ago, the Hungarian physician Julius von Kossa developed a now classical staining method for detecting mineral deposits in animal tissues. Since then, this method has been widely adapted and combined with different counterstains, but still bears the name of its original inventor, who, if alive, would have turned 150 in 2015. As a rather inexpensive technique that does not require special instrumentation, von Kossa’s staining method became extremely popular for demonstrating mineralized tissues in vivo and in vitro. This article pays tribute to von Kossa and to his handy staining method.


2021 ◽  
Vol 22 (22) ◽  
pp. 12343
Author(s):  
Alexander L. Danesi ◽  
Dimitra Athanasiadou ◽  
Ahmad Mansouri ◽  
Alina Phen ◽  
Mehrnoosh Neshatian ◽  
...  

Biomineralization is a crucial process whereby organisms produce mineralized tissues such as teeth for mastication, bones for support, and shells for protection. Mineralized tissues are composed of hierarchically organized hydroxyapatite crystals, with a limited capacity to regenerate when demineralized or damaged past a critical size. Thus, the development of protein-based materials that act as artificial scaffolds to guide hydroxyapatite growth is an attractive goal both for the design of ordered nanomaterials and for tissue regeneration. In particular, amelogenin, which is the main protein that scaffolds the hierarchical organization of hydroxyapatite crystals in enamel, amelogenin recombinamers, and amelogenin-derived peptide scaffolds have all been investigated for in vitro mineral growth. Here, we describe uniaxial hydroxyapatite growth on a nanoengineered amelogenin scaffold in combination with amelotin, a mineral promoting protein present during enamel formation. This bio-inspired approach for hydroxyapatite growth may inform the molecular mechanism of hydroxyapatite formation in vitro as well as possible mechanisms at play during mineralized tissue formation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joana T. Rosa ◽  
Paul Eckhard Witten ◽  
Ann Huysseune

Bone-producing osteoblasts and dentin-producing odontoblasts are closely related cell types, a result from their shared evolutionary history in the ancient dermal skeleton. In mammals, the two cell types can be distinguished based on histological characters and the cells’ position in the pulp cavity or in the tripartite periodontal complex. Different from mammals, teleost fish feature a broad diversity in tooth attachment modes, ranging from fibrous attachment to firm ankylosis to the underlying bone. The connection between dentin and jaw bone is often mediated by a collar of mineralized tissue, a part of the dental unit that has been termed “bone of attachment”. Its nature (bone, dentin, or an intermediate tissue type) is still debated. Likewise, there is a debate about the nature of the cells secreting this tissue: osteoblasts, odontoblasts, or yet another (intermediate) type of scleroblast. Here, we use expression of the P/Q rich secretory calcium-binding phosphoprotein 5 (scpp5) to characterize the cells lining the so-called bone of attachment in the zebrafish dentition. scpp5 is expressed in late cytodifferentiation stage odontoblasts but not in the cells depositing the “bone of attachment”. nor in bona fide osteoblasts lining the supporting pharyngeal jaw bone. Together with the presence of the osteoblast marker Zns-5, and the absence of covering epithelium, this links the cells depositing the “bone of attachment” to osteoblasts rather than to odontoblasts. The presence of dentinal tubule-like cell extensions and the near absence of osteocytes, nevertheless distinguishes the “bone of attachment” from true bone. These results suggest that the “bone of attachment” in zebrafish has characters intermediate between bone and dentin, and, as a tissue, is better termed “dentinous bone”. In other teleosts, the tissue may adopt different properties. The data furthermore support the view that these two tissues are part of a continuum of mineralized tissues. Expression of scpp5 can be a valuable tool to investigate how differentiation pathways diverge between osteoblasts and odontoblasts in teleost models and help resolving the evolutionary history of tooth attachment structures in actinopterygians.


Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 551
Author(s):  
Teerawat Sukpaita ◽  
Suwabun Chirachanchai ◽  
Atiphan Pimkhaokham ◽  
Ruchanee Salingcarnboriboon Ampornaramveth

Conventional bone grafting procedures used to treat bone defects have several limitations. An important aspect of bone tissue engineering is developing novel bone substitute biomaterials for bone grafts to repair orthopedic defects. Considerable attention has been given to chitosan, a natural biopolymer primarily extracted from crustacean shells, which offers desirable characteristics, such as being biocompatible, biodegradable, and osteoconductive. This review presents an overview of the chitosan-based biomaterials for bone tissue engineering (BTE). It covers the basic knowledge of chitosan in terms of biomaterials, the traditional and novel strategies of the chitosan scaffold fabrication process, and their advantages and disadvantages. Furthermore, this paper integrates the relevant contributions in giving a brief insight into the recent research development of chitosan-based scaffolds and their limitations in BTE. The last part of the review discusses the next-generation smart chitosan-based scaffold and current applications in regenerative dentistry and future directions in the field of mineralized tissue regeneration.


2021 ◽  
Vol 14 (3) ◽  
pp. 361-366
Author(s):  
Rachna Raj ◽  
◽  
Safia Haideri ◽  
Bipin Kumar Yadav ◽  
Joohi Chandra ◽  
...  

Erosive tooth wear (ETW) refers to the chemical dissolution of mineralized tissues by acids of non-bacterial origin. It occurs in the primary as well as the permanent dentition. In this study, our objectives were to investigate and compare the impact of chlorhexidine gluconate (CHX), essential oils (EO), and cetylpyridinium chloride (CPC) on ETW protection produced by conventional fluoride kinds of toothpaste. A clinically relevant in-vitro erosion/abrasion pH cycling model was employed to test the effect of the aforementioned mouthwashes on modulating the ability of NaF and SnF2 types of toothpaste. The mean dentin surface loss associated with NaF toothpaste was significantly lower than for the SnF2 toothpaste. On the other hand, enamel surface loss with SnF2 toothpaste was significantly lower than for the NaF toothpaste. Also, the surface loss of erosion was significantly higher when associated with abrasion than without brushing and for both enamel and dentin. There was no significant difference in the surface loss among all types of mouthwash. Commonly used types of mouthwash containing antimicrobial agents or additional fluoride do not impact fluoride toothpaste action on erosion/abrasion. Also, considering erosion only, the tested SnF2 dentifrice provided better protection against surface loss of enamel than the other.


Sign in / Sign up

Export Citation Format

Share Document