scholarly journals THE WOOD‐FRAMED WITH SHEATHING BUILDINGS ‐ ALTERNATIVE FOR HOUSING CONSTRUCTION

2006 ◽  
Vol 12 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Mikołaj Malesza ◽  
Czesław Miedziałowski

Numerical model of the wood‐framed with sheathing structure and selected results of experimental tests are presented in the paper. Wall and floor diaphragms as the three‐dimensional composite structure are modeled applying plane shell elements representing framing and sheathing and beam element describing the fasteners. Experimental tests were conducted on typically disposed the wood‐framed wall and floor diaphragms in residential housing in Poland. Associated tests of materials and connections and their results are also included in the paper. Non‐linear behaviour of fasteners is examined in the numerical model. Results obtained from model and experiments are coincident.

Author(s):  
Ilson P. Pasqualino ◽  
Silvia L. Silva ◽  
Segen F. Estefen

This work deals with a numerical and experimental investigation on the effect of the reeling installation process on the collapse pressure of API X steel pipes. A three-dimensional nonlinear finite element model was first developed to simulate the bending and straightening process as it occurs during installation. The model is then used to determine the collapse pressures of both intact and plastically strained pipes. In addition, experimental tests on full-scale models were carried out in order to calibrate the numerical model. Pipe specimens are bent on a rigid circular die and then straightened with the aid of a custom-made test facility. Subsequently, the specimens are tested quasi-statically under external pressure until collapse in a pressure vessel. Unreeled specimens were also tested to complete the database for calibrating the numerical model. The numerical model is finally used to generate collapse envelopes of reeled and unreeled pipes with different geometry and material.


Author(s):  
Diogo do Amaral M. Amante ◽  
John Alex Chujutalli ◽  
Segen F. Estefen

The aim of this work is to accomplish an assessment of the hull girder ultimate strength of intact and damaged double hull tankers. First, the paper presents the validation of the numerical model through comparisons with experimental tests of small-scale box girders. The numerical models are represented by shell elements assuming finite membrane strains and large rotations, considering both geometric and material nonlinearities. Simulation results show very good agreement with experimental tests. Then, a numerical model of a double hull tanker was developed and analyzed in the intact and damaged conditions. Several damage scenarios were investigated.


Author(s):  
Qixiang Yan ◽  
Chuan Zhang ◽  
Wang Wu ◽  
Hongxue Zhu ◽  
Wenbo Yang

In this paper, the authors developed a three dimensional shell-spring numerical model of a shield tunnel, in which the elastic shell elements were adopted to model the segments and the spring models were used for the simulation of the segmental joints. The highlight of this research is that the non-linearity of the joint bending stiffness was taken into consideration, which was first determined through the numerical simulation by using a refined 3D continuum model of the segment-joint structure. The automatic iteration of the joint bending stiffness was achieved through programming with the ANSYS ADPL software. Based on a specific engineering example, a 3D continuum-shell-spring model was established to analyze the internal forces of shield tunnel segmental linings subject to swelling soils. The developed numerical model and its application in the analysis of the internal forces of shield tunnel segmental linings in swelling ground will provide useful reference and guidance for the numerical calculation in similar engineering projects in future.


Author(s):  
Yasuo NIIDA ◽  
Norikazu NAKASHIKI ◽  
Takaki TSUBONO ◽  
Shin’ichi SAKAI ◽  
Teruhisa OKADA

1998 ◽  
Vol 26 ◽  
pp. 174-178 ◽  
Author(s):  
Peter Gauer

A physically based numerical model of drifting and blowing snow in three-dimensional terrain is developed. The model includes snow transport by saltation and suspension. As an example, a numerical simulation for an Alpine ridge is presented and compared with field measurements.


2021 ◽  
Vol 11 (15) ◽  
pp. 6972
Author(s):  
Lihua Cui ◽  
Fei Ma ◽  
Tengfei Cai

The cavitation phenomenon of the self-resonating waterjet for the modulation of erosion characteristics is investigated in this paper. A three-dimensional computational fluid dynamics (CFD) model was developed to analyze the unsteady characteristics of the self-resonating jet. The numerical model employs the mixture two-phase model, coupling the realizable turbulence model and Schnerr–Sauer cavitation model. Collected data from experimental tests were used to validate the model. Results of numerical simulations and experimental data frequency bands obtained by the Fast Fourier transform (FFT) method were in very good agreement. For better understanding the physical phenomena, the velocity, the pressure distributions, and the cavitation characteristics were investigated. The obtained results show that the sudden change of the flow velocity at the outlet of the nozzle leads to the forms of the low-pressure zone. When the pressure at the low-pressure zone is lower than the vapor pressure, the cavitation occurs. The flow field structure of the waterjet can be directly perceived through simulation, which can provide theoretical support for realizing the modulation of the erosion characteristics, optimizing nozzle structure.


Sign in / Sign up

Export Citation Format

Share Document