scholarly journals ASYMPTOTIC INTEGRATION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRODIFFERENTIAL RIGHT-HAND SIDE

2015 ◽  
Vol 20 (4) ◽  
pp. 471-489 ◽  
Author(s):  
Milan Medved ◽  
Michal Pospisil

In this paper we deal with the problem of asymptotic integration of a class of fractional differential equations of the Caputo type. The left-hand side of such type of equation is the Caputo derivative of the fractional order r ∈ (n − 1, n) of the solution, and the right-hand side depends not only on ordinary derivatives up to order n − 1 but also on the Caputo derivatives of fractional orders 0 < r 1 < · · · < r m < r, and the Riemann–Liouville fractional integrals of positive orders. We give some conditions under which for any global solution x(t) of the equation, there is a constant c ∈ R such that x(t) = ctR + o(tR) as t → ∞, where R = max{n − 1, r m }.

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2132
Author(s):  
Yuri Luchko

In this paper, we first discuss the convolution series that are generated by Sonine kernels from a class of functions continuous on a real positive semi-axis that have an integrable singularity of power function type at point zero. These convolution series are closely related to the general fractional integrals and derivatives with Sonine kernels and represent a new class of special functions of fractional calculus. The Mittag-Leffler functions as solutions to the fractional differential equations with the fractional derivatives of both Riemann-Liouville and Caputo types are particular cases of the convolution series generated by the Sonine kernel κ(t)=tα−1/Γ(α),0<α<1. The main result of the paper is the derivation of analytic solutions to the single- and multi-term fractional differential equations with the general fractional derivatives of the Riemann-Liouville type that have not yet been studied in the fractional calculus literature.


Author(s):  
Malgorzata Klimek

In the paper, solutions of basic fractional differential equations with right-sided derivatives of order α and with variable tβ - potential are derived using the Mellin transform method. The results are Meijer G-function series fulfilling the respective boundary conditions. The obtained series are transformed into solutions of analogous equations with left-sided derivatives and (b – t)β - potential. As an example case α + β = α/J is studied and for J = 1 the eigenfunctions of the right-sided Riemann-Liouville derivative are recovered.


Author(s):  
Carl F. Lorenzo ◽  
Tom T. Hartley

It has been known that the initialization of fractional operators requires time-varying functions, a complicating factor. This paper simplifies the process of initialization of fractional differential equations by deriving Laplace transforms for the initialized fractional integral and derivative that generalize those for the integer-order operators. This paper provides background on past work in the area and determines the Laplace transforms for initialized fractional integrals of any order and fractional derivatives of order less than one. A companion paper in this conference extends the theory to higher order derivative operators and provides application insight.


Fractals ◽  
2018 ◽  
Vol 26 (04) ◽  
pp. 1850056 ◽  
Author(s):  
CHUNTAO YIN ◽  
LI MA ◽  
CHANGPIN LI

The aim of this paper is to establish the comparison principles for differential equations involving Hadamard-type fractional derivatives. First, the continuous dependence of solutions on the right-hand side functions of Hadamard-type fractional differential equations (HTFDEs) is proposed. Then, we state and prove the first and second comparison principles for HTFDEs, respectively. The corresponding examples are provided as well.


Author(s):  
Carl F. Lorenzo ◽  
Tom T. Hartley

It has been known that the initialization of fractional operators requires time-varying functions, a complicating factor. This paper simplifies the process of initialization of fractional differential equations by deriving Laplace transforms for the initialized fractional integral and derivative that generalize those for the integer-order operators. A companion paper in this conference determines the Laplace transforms for initialized fractional integrals of any order and fractional derivatives of order less than one. This paper extends the theory for the Laplace transform of the derivative to higher order and provides applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Atimad Harir ◽  
Said Melliani ◽  
Lalla Saadia Chadli

In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order q ∈ 0,1 .


2018 ◽  
Vol 21 (2) ◽  
pp. 423-441 ◽  
Author(s):  
Bashir Ahmad ◽  
Rodica Luca

AbstractWe study the existence of solutions for a system of nonlinear Caputo fractional differential equations with coupled boundary conditions involving Riemann-Liouville fractional integrals, by using the Schauder fixed point theorem and the nonlinear alternative of Leray-Schauder type. Two examples are given to support our main results.


Author(s):  
Tadeusz Jankowski

AbstractUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives $D^{q}_{T}x$ and $D^{q}_{T}y$. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2078 ◽  
Author(s):  
Vasily E. Tarasov

In this article, two well-known standard models with continuous time, which are proposed by two Nobel laureates in economics, Robert M. Solow and Robert E. Lucas, are generalized. The continuous time standard models of economic growth do not account for memory effects. Mathematically, this is due to the fact that these models describe equations with derivatives of integer orders. These derivatives are determined by the properties of the function in an infinitely small neighborhood of the considered time. In this article, we proposed two non-linear models of economic growth with memory, for which equations are derived and solutions of these equations are obtained. In the differential equations of these models, instead of the derivative of integer order, fractional derivatives of non-integer order are used, which allow describing long memory with power-law fading. Exact solutions for these non-linear fractional differential equations are obtained. The purpose of this article is to study the influence of memory effects on the rate of economic growth using the proposed simple models with memory as examples. As the methods of this study, exact solutions of fractional differential equations of the proposed models are used. We prove that the effects of memory can significantly (several times) change the growth rate, when other parameters of the model are unchanged.


Author(s):  
Ma. Elena Hernández-Hernández ◽  
Vassili N. Kolokoltsov

AbstractThis paper provides well-posedness results and stochastic representations for the solutions to equations involving both the right- and the left-sided generalized operators of Caputo type. As a special case, these results show the interplay between two-sided fractional differential equations and two-sided exit problems for certain Lévy processes.


Sign in / Sign up

Export Citation Format

Share Document