scholarly journals ASSESMENT OF NITRIFICATION AND DENITRIFICATION RATE IN BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER

Author(s):  
Giedrė Vabolienė ◽  
Algirdas Bronislovas Matuzevičius

Biological nitrogen removal from wastewater is based on nitrification and denitrification processes in biological treatment plants with activated sludge. Slowed growth of nitrification bacteria is one of basic problems in biological nitrogen removal from wasterwater. Using biological nitrogen removal technologies at changing nitrification and denitrification rate, it is very important to evaluate properly aeration and reduced aeration duration and to estimate nitrification and denitrification rate. To this purpose an investigation was carried out at Utena Wastewater Treatment Plant. Nitrification and denitrification rate was estimated during five experiments in aeration tanks when the duration of aeration and reduced aeration was from 120 to 180 min. Nitrification and denitrification rate at a different aeration regime and impact of aeration regime on biological nitrogen removal was estimated in the work.

2004 ◽  
Vol 48 (11-12) ◽  
pp. 445-452 ◽  
Author(s):  
M. Fiter ◽  
J. Colprim ◽  
M. Poch ◽  
I. Rodríguez-Roda

Most of the small wastewater treatment plants in Catalonia were not designed to remove nutrients. However, the large safety margins built into their original engineering design has meant that, in many cases, it has been possible to remove part of the nitrogen without being controlled. This paper focuses on the practical experience carried out in one of these facilities, the Bisbal wastewater treatment plant, aimed at enhancing the biological nitrogen removal using simple, low-cost, easy-to-operate measurement and control. The control strategy, which is based on air supply regulation, was previously designed using simulation studies. A dissolved oxygen monitoring system was installed into the facility, while nitrogen concentrations were analysed every day. Optimal dissolved oxygen profiles in the oxidation ditch were identified, while the air supply strategy was modified according to the variations in the influent.


1991 ◽  
Vol 24 (7) ◽  
pp. 121-131 ◽  
Author(s):  
Elzbieta Plaza ◽  
Jan Bosander ◽  
Jozef Trela

The pre-denitrification method, with internal carbon source for biological nitrogen removal, has been studied in full-scale experiments at a large wastewater treatment plant (flow 130,000 m3/d). Factors controlling nitrogen removal, such as fraction of anoxic zone and organic material content in wastewater are discussed. A flexible system with fine bubble membrane disc diffusers made it possible to change the ratio between the volumes for nitrification and denitrification. The denitrification process was limited by lack of organic carbon in the wastewater and increasing the fraction of anoxic zone did not improve the efficiency of the system. With the help of on-line analysers for total nitrogen and chemical oxygen demand, the relationship between the denitrification efficiency and the carbon/nitrogen ratio has been given careful study. The average value for chemical oxygen demand after primary sedimentation was only 130 mg/l and the value for the COD/N ratio was found to be 6.3. The denitrification rate was usually in the range of 1.0 and 2.0 mg NO3-N/g MLVSS h.


2011 ◽  
Vol 383-390 ◽  
pp. 3729-3733 ◽  
Author(s):  
Ya Er Ba ◽  
Zi Fu Li

Coking wastewater component complex is difficult to treat and yet unable to achieve the emission target by biological treatment, thus needs further processing. Wastewater treatment plant of coking plant in Bao Gang applied A/O process in biological treatment, used special treatment agent -M180 by coagulation and sedimentation process. Through treatment, the parameters reached the first grade of GB13456-92. It is of great reference significance for process debug and operation of the coking wastewater treatment system.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 203-209 ◽  
Author(s):  
R. Kayser ◽  
G. Stobbe ◽  
M. Werner

At Wolfsburg for a load of 100,000 p.e., the step-feed activated sludge process for nitrogen removal is successfully in operation. Due to the high denitrification potential (BOD:TKN = 5:1) the effluent total nitrogen content can be kept below 10 mg l−1 N; furthermore by some enhanced biological phosphate removal about 80% phosphorus may be removed without any chemicals.


2010 ◽  
Vol 62 (8) ◽  
pp. 1965-1965
Author(s):  
S. Park ◽  
J. Lee ◽  
J. Park ◽  
I. Byun ◽  
T. Park ◽  
...  

Publisher‘s note. We regret that the published version of this article erroneously denoted the first author as corresponding author; in fact the formal corresponding author of this paper is Professor Taeho Lee, whose address is repeated below.


2008 ◽  
Vol 57 (8) ◽  
pp. 1287-1293 ◽  
Author(s):  
A. Jobbágy ◽  
G. M. Tardy ◽  
Gy. Palkó ◽  
A. Benáková ◽  
O. Krhutková ◽  
...  

The purpose of the experiments was to increase the rate of activated sludge denitrification in the combined biological treatment system of the Southpest Wastewater Treatment Plant in order to gain savings in cost and energy and improve process efficiency. Initial profile measurements revealed excess denitrification capacity of the preclarified wastewater. As a consequence, flow of nitrification filter effluent recirculated to the anoxic activated sludge basins was increased from 23,000 m3 d−1 to 42,288 m3 d−1 at an average preclarified influent flow of 64,843 m3 d−1, Both simulation studies and microbiological investigations suggested that activated sludge nitrification, achieved despite the low SRT (2–3 days), was initiated by the backseeding from the nitrification filters and facilitated by the decreased oxygen demand of the influent organics used for denitrification. With the improved activated sludge denitrification, methanol demand could be decreased to about half of the initial value. With the increased efficiency of the activated sludge pre-denitrification, plant effluent COD levels decreased from 40–70 mg l−1 to < 30–45 mg l−1 due to the decreased likelihood of methanol overdosing in the denitrification filter


Sign in / Sign up

Export Citation Format

Share Document