scholarly journals MATHEMATICAL MODELLING AND COMPUTER SIMULATION OF TEMPERATURE DISTRIBUTION IN INHOMOGENEOUS COMPOSITE SYSTEMS WITH IMPERFECT INTERFACE

2014 ◽  
Vol 6 (2) ◽  
pp. 77-85
Author(s):  
Pratibha Joshi ◽  
Manoj Kumar

Many studies have been done previously on temperature distribution in inhomogeneous composite systems with perfect interface, having no discontinuities along it. In this paper we have determined steady state temperature distribution in two inhomogeneous composite systems with imperfect interface, having discontinuities in temperature and heat flux using decomposed immersed interface method and performed the numerical simulation on MATLAB.

2012 ◽  
Vol 462 ◽  
pp. 109-115
Author(s):  
Zhen Long Wang ◽  
Bao Cheng Xie ◽  
Yu Kui Wang ◽  
Wan Sheng Zhao

A numerical model of cathode erosion in EDM process using finite element method is presented. Using this model, numerical simulation of the single spark of EDM process has been carried out with parameters such as conduction, convection, the latent heat of phase change, thermal properties of material with temperature and gauss distribution of heat flux to predict the temperature distribution in the discharge point of cathode as a result of single discharges in EDM process. The simulation result shows the trend of dynamic temperature distribution of heat -affected zone and well explains mechanism of material removal in EDM process.


Author(s):  
E. Radi ◽  
I. Sevostianov

An analytic solution for the steady-state temperature distribution in an infinite conductive medium containing an insulated toroidal inhomogeneity and subjected to remotely applied uniform heat flux is obtained. The temperature flux on the torus surface is then determined as a function of torus parameters. This result is used to calculate the resistivity contribution tensor for the toroidal inhomogeneity required to evaluate the effective conductive properties of a material containing multiple inhomogeneities of this shape.


Mechanika ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 18-24
Author(s):  
Asad Alizadeh ◽  
Anas Abid Mattie

The numerical simulation of the flow of fluid through one or a set of objects that causes the flow to separate from the surface of them has been the subject of interest by researchers over the past few decades. One of the most important types of these objects is those with a square cross section which have important and diverse applications in different industries. One of the practical applications of these types of streams is flow around chimneys, high-rise buildings, naval structures, suspended bridges, airplane wings, ship propellers and ducts. In this research, the immersed interface method is used which is a non-conforming method to the boundary. Eulerian mesh for fluid field, and Lagrangian mesh for solid field is used. The connection of these two networks is established by the Dirac Delta function. Considering the cylinder as a rigid immersion boundary within the flow. First, the flow around a square cylinder was simulated and we surveyed different flow patterns. The changes in the number of Strouhal  and the Drag coefficient were investigated in different Reynolds. The flow around the two cylinders was simulated. It was observed that with the increase of Reynolds number and the gap between cylinders, the vortex shedding (Strouhal number) would increase.


A theoretical analysis to calculate the steady-state temperature distribution within a cylindrical heat sink configuration, where the thermal conductivity is dependent on the temperature, is outlined. The analysis applies to any heat sink arrangement that can be treated as one or more homogeneous solid cylinders mounted on a semi-infinite heat sink, where the heat flux incident on both faces of each cylinder is uniform over a given centralized circular region. The model is used to analyse the temperature distribution within the heat sink configurations used commonly to package two-terminal semiconductor devices that are operated as sources of electromagnetic radiation in microwave oscillators. Results are presented that show how the maximum temperature rise within commercially available heat sink packages, depends on the input heat flux and the dimensions and thermal conductivity of the materials. Furthermore, results that show how the temperature rise varies across the interfaces of given heat sink configurations, similar to those used commercially, are given also.


Heat Transfer ◽  
2021 ◽  
Author(s):  
Anthonysamy John Christopher ◽  
Nanjundan Magesh ◽  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Ravikumar Shashikala Varun Kumar

2011 ◽  
Vol 22 (07) ◽  
pp. 687-710 ◽  
Author(s):  
THEODOROS P. HORIKIS

A numerical technique is described that can efficiently compute solutions of interface problems. These are problems with data, such as the coefficients of differential equations, discontinuous or even singular across one or more interfaces. A prime example of these problems are optical waveguides, and as such the scheme is applied to Maxwell's equations as they are formulated to describe light confinement in Bragg fibers. It is based on standard finite differences appropriately modified to take into account all possible discontinuities across the waveguide's interfaces due to the change of the refractive index. Second- and fourth-order schemes are described with additional adaptations to handle matrix eigenvalue problems, demanding geometries and defects.


Sign in / Sign up

Export Citation Format

Share Document