scholarly journals Numerical simulation of a fractional model of temperature distribution and heat flux in the semi infinite solid

2016 ◽  
Vol 55 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Anupama Choudhary ◽  
Devendra Kumar ◽  
Jagdev Singh
2014 ◽  
Vol 6 (2) ◽  
pp. 77-85
Author(s):  
Pratibha Joshi ◽  
Manoj Kumar

Many studies have been done previously on temperature distribution in inhomogeneous composite systems with perfect interface, having no discontinuities along it. In this paper we have determined steady state temperature distribution in two inhomogeneous composite systems with imperfect interface, having discontinuities in temperature and heat flux using decomposed immersed interface method and performed the numerical simulation on MATLAB.


2012 ◽  
Vol 462 ◽  
pp. 109-115
Author(s):  
Zhen Long Wang ◽  
Bao Cheng Xie ◽  
Yu Kui Wang ◽  
Wan Sheng Zhao

A numerical model of cathode erosion in EDM process using finite element method is presented. Using this model, numerical simulation of the single spark of EDM process has been carried out with parameters such as conduction, convection, the latent heat of phase change, thermal properties of material with temperature and gauss distribution of heat flux to predict the temperature distribution in the discharge point of cathode as a result of single discharges in EDM process. The simulation result shows the trend of dynamic temperature distribution of heat -affected zone and well explains mechanism of material removal in EDM process.


Heat Transfer ◽  
2021 ◽  
Author(s):  
Anthonysamy John Christopher ◽  
Nanjundan Magesh ◽  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Ravikumar Shashikala Varun Kumar

Author(s):  
Junnosuke Okajima ◽  
Atsuki Komiya ◽  
Shigenao Maruyama

The objective of this work is to experimentally and numerically evaluate small-scale cryosurgery using an ultrafine cryoprobe. The outer diameter (OD) of the cryoprobe was 550 μm. The cooling performance of the cryoprobe was tested with a freezing experiment using hydrogel at 37 °C. As a result of 1 min of cooling, the surface temperature of the cryoprobe reached −35 °C and the radius of the frozen region was 2 mm. To evaluate the temperature distribution, a numerical simulation was conducted. The temperature distribution in the frozen region and the heat transfer coefficient was discussed.


2021 ◽  
pp. 153319
Author(s):  
Xiaoping Li ◽  
Hongyu Fan ◽  
Weifeng Liu ◽  
Yunqiu Cui ◽  
Chunjie Niu ◽  
...  

Author(s):  
Wai Hing Wong ◽  
Normah Mohd. Ghazali

Kertas kerja ini membincangkan simulasi berangka ke atas sinki haba saluran mikro dalam penyejukan alatan mikroelektronik. Model Dinamik Bendalir Berkomputer (CFD) tiga dimensi dibina menggunakan pakej komersil, FLUENT, untuk mengkaji fenomenon aliran bendalir dan pemindahan haba konjugat di dalam suatu sinki haba segi empat yang diperbuat daripada silikon. Model ditentusahkan dengan keputusan daripada uji kaji dan pengkajian berangka yang lepas untuk lingkungan nombor Reynolds kurang daripada 400 berdasarkan diameter hidraulik 86 mm. Kajian ini mengambil kira kesan kelikatan bendalir yang bersandaran dengan suhu dan keadaan aliran pra–membangun dari segi hidrodinamik dan haba. Model memberi maklumat tentang taburan suhu dan fluks haba yang terperinci di dalam sinki haba saluran mikro. Kecerunan suhu yang tinggi dicatat pada kawasan pepejal berdekatan dengan sumber. Fluks haba paling tinggi didapati pada dinding tepi saluran mikro diikuti oleh dinding atas dan bawah. Purata pekali pemindahan haba yang lebih tinggi bagi silikon menjadikan ia bahan binaan sinki haba saluran mikro yang lebih baik berbanding dengan kuprum dan aluminium. Peningkatan nisbah aspek saluran mikro yang bersegi empat memberi kecekapan penyejukan yang lebih tinggi kerana kelebaran saluran yang berkurangan memberi kecerunan halaju yang lebih tinggi dalam saluran. Nisbah aspek yang optimum yang diperoleh adalah dalam lingkungan 3.7 – 4.1. Kata kunci: Saluran mikro, CFD, FLUENT, simulasi berangka, penyejukan mikroelektron The paper discusses the numerical simulation of a micro–channel heat sink in microelectronics cooling. A three–dimensional Computational Fluid Dynamics (CFD) model was built using the commercial package, FLUENT, to investigate the conjugate fluid flow and heat transfer phenomena in a silicon–based rectangular microchannel heatsink. The model was validated with past experimental and numerical work for Reynolds numbers less than 400 based on a hydraulic diameter of 86 mm. The investigation was conducted with consideration of temperaturedependent viscosity and developing flow, both hydrodynamically and thermally. The model provided detailed temperature and heat flux distributions in the microchannel heatsink. The results indicate a large temperature gradient in the solid region near the heat source. The highest heat flux is found at the side walls of the microchannel, followed by top wall and bottom wall due to the wall interaction effects. Silicon is proven to be a better microchannel heatsink material compared to copper and aluminum, indicated by a higher average heat transfer. A higher aspect ratio in a rectangular microchannel gives higher cooling capability due to high velocity gradient around the channel when channel width decreases. Optimum aspect ratio obtained is in the range of 3.7 – 4.1. Key words: Microchannel, CFD, FLUENT, numerical simulation, microeletronics cooling


Sign in / Sign up

Export Citation Format

Share Document