scholarly journals PROPOSAL FOR NAVIGATION AND CONTROL SYSTEM FOR SMALL UAV

Aviation ◽  
2010 ◽  
Vol 14 (3) ◽  
pp. 77-82 ◽  
Author(s):  
Grzegorz Kopecki ◽  
Jacek Pieniążek ◽  
Tomasz Rogalski ◽  
Pawel Rzucidło ◽  
Andrzej Tomczyk

The article presents the project of UAV control system realized at Department of Avionics and Control Systems of Rzeszów University of Technology. The project is based on earlier experiences. In the article general structure of the onboard control system is shown as well as the structure of control station. There are described in proposed control and navigation procedures as well as human factor, failure detection and system reconfiguration. Santrauka Šiame straipsnyje aprašomas bepiločiu orlaiviu kontroles sistemos projekto lgyvendinimas Ržešovo technologijos universiteto Aviadjos prietaisu ir kontroles sistemu katedroje. Projektas atliktas remiantis ankstesne patirtimi. Pateikta ne tik borto sistemu bendroji struktūra, bet ir kontroles stočiu struktūra. Darbe nagrinejamas žmogaus veiksnys, gedimu aptikimas ir sistemu rekonfigūravimas pasiūlytose kontroles ir navigacijos procedūrose.

2015 ◽  
Vol 7 (2) ◽  
pp. 119-142 ◽  
Author(s):  
Miguel San Martin ◽  
Gavin F. Mendeck ◽  
Paul B. Brugarolas ◽  
Gurkirpal Singh ◽  
Frederick Serricchio ◽  
...  

2022 ◽  
Vol 166 ◽  
pp. 108812
Author(s):  
Vinay Kumar ◽  
Kailash Chandra Mishra ◽  
Pooja Singh ◽  
Aditya Narayan Hati ◽  
Mohan Rao Mamdikar ◽  
...  

Author(s):  
Fu Dongmei

In engineering application, the characteristics of the control system are entirely determined by the system controller once the controlled object has been chosen. Improving the traditional controller or constructing the new controller is an unfading study field of control theory and application. The control system is greatly enriched and developed by this way. As a complicated self-adaptable system, the biological immune system can effectively and smoothly stand against antigens and viruses intruded into organism. It is possible to improve the self-learning, adaptive and robustness capability of the control system through embedded an artificial immune controller in control system. Based on the biological immune mechanism and artificial immune model, this chapter attempts to study the immune controller design and application in traditional control system..First, a kind of artificial immune controller is proposed based on the T-B cells immunity. The boundedness and the stability of SISO control systems, which constructed by the artificial immune controller, are proved by the little gain theorem. A general controller structure frame based on the T-B cells immunity is proposed, which includes the same kind of controller proposed previously. The validity of this artificial immune controller is verified by simulation. Second, a new type of artificial immune controllers is constructed according to a simple double-cell immune dynamics model. The non-error characteristic of SISO control systems, which constructed by the artificial immune controller, is proved by the nonlinear theory in this chapter. The I/O stability and no-error characteristic of the system are verified by simulations, which show that the kind of artificial immune system have good anti-lag capability. Third, the Varela immune network model has been improved based on which an artificial immune system is proposed. The odd linearization method of the non-linear system is used to prove the stability and non-error characteristic of the SISO system constructed by the artificial immune control system. Its I/O stability, non-error characteristic and strong anti-lag capability are also verified by simulation. Finally, based on the comparison of the three kinds of immune controllers, a general structure of the artificial immune controller is proposed. The further study on this field is indicated in this chapter lastly.


1990 ◽  
Vol 112 (3) ◽  
pp. 365-371 ◽  
Author(s):  
Y. Halevi ◽  
A. Ray

This paper presents statistical analysis of delays in Integrated Communication and Control System (ICCS) networks [1–4] that are based on asynchronous time-division multiplexing. The models are obtained in closed form for analyzing control systems with randomly varying delays. The results of this research are applicable to ICCS design for complex dynamical processes like advanced aircraft and spacecraft, autonomous manufacturing plants, and chemical and processing plants.


Author(s):  
Itsuki Naito ◽  
Taisuke Koyamada ◽  
Keisuke Yamamoto ◽  
Kingo Igarashi ◽  
Hideo Harada ◽  
...  

This paper introduces the Instrumentation and Control (I&C) system for the proposed UK Advanced Boiling Water Reactor (UK ABWR) offered by Hitachi-GE Nuclear Energy, Ltd (Hitachi-GE). Hitachi-GE has been progressing the UK Generic Design Assessment (GDA) licensing process over the last 3 years. This is the process through which the Office for Nuclear Regulations (ONR) assesses the UK ABWR for suitability from a nuclear safety, security, environmental protection and waste management perspective and it is the first step towards proceeding with the construction phase in the UK. ONR’s regulatory expectations setting out relevant good practice are described in the Safety Assessment principles (SAPs), which are considered into the I&C design for UK ABWR. In addition, it has also been designed to take into account relevant good practices and regulations. In accordance with expectations derived from SAPs, the UK ABWR I&C systems are categorized and classified as required by IEC 61513 and IEC 61226. In addition, the overall I&C architecture, including all associated Human-Machine Interfaces (HMIs), abides by the principles independence and diversity of safety measures, segregation and separation of the protection and control systems. As a result, the UK ABWR I&C architecture is composed of major eight sub-systems. The eight sub-systems are: -Safety System Logic and Control system (SSLC) -Hardwired Backup System (HWBS) -Safety Auxiliary Control System (SACS) -Plant Control System (PCntlS) -Reactor/Turbine Auxiliary Control System (RTACS) -Plant Computer System (PCS) -Severe Accident Control and Instrumentation system (SA C&I) -Other dedicated C&I systems. The features for each sub-system such as redundancy of safety train or segregation among divisions are specified so that each sub-system will achieve its reliability as well as increase availability. While in the Japanese ABWR safety I&C system, the main protection system (SSLC), is microprocessor-based from the decades of successful operating experience in the past BWR, to meet the UK regulatory regime expectation on diversity between Class 1 platform and non-Class 1 platform, the SSLC (Class 1) for the UK ABWR is by Field Programmable Gate Array (FPGA). This system is currently under development and complies with IEC 62556. Its safety integrity level is planned to be SIL 3 (as a single division) and SIL 4 (as a four division system) as defined in IEC 61508. The HMIs which constitute an integral part of the I&C systems are also designed to comply with the I&C architecture regarding their categorization and classification with consideration of Human Factors (HF) modern methods taken into accounts.


Author(s):  
Wendy Morgenstern ◽  
Kristin Bourkland ◽  
Oscar Hsu ◽  
Alice Liu ◽  
Paul Mason ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document