scholarly journals USING 3D LASER SCANNING TO ANALYZE HERITAGE STRUCTURES: THE CASE STUDY OF EGYPTIAN PALACE

2020 ◽  
Vol 26 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Mohamed Marzouk

Preservation of heritage buildings should be carried out to get a better understanding of the behavior of their structures and keep them in a good condition. As such, corrective diagnosis of heritage buildings health conditions would help to identify potential risks and take remedy actions. This paper presents a framework for heritage Building Information Modeling (HBIM) application in Egyptian Heritage buildings. The framework is capable of utilizing processed point clouds using 3D laser scanning to create different purpose BIM models at the different levels of development to simulate the structural performances under different types of actions. The paper illustrates an extensive structural analysis for Tosson palace in Cairo – Egypt to assess its health state to assure its sustainability for future use.

Author(s):  
M. Lo Brutto ◽  
E. Iuculano ◽  
P. Lo Giudice

Abstract. The preservation of historic buildings can often be particularly difficult due to the lack of detailed information about architectural features, construction details, etc.. However, in recent years considerable technological innovation in the field of Architecture, Engineering, and Construction (AEC) has been achieved by the Building Information Modeling (BIM) process. BIM was developed as a methodology used mainly for new construction but, given its considerable potential, this approach can also be successfully used for existing buildings, especially for buildings of historical and architectural value. In this case, it is more properly referred to as Historic – or Heritage – Building Information Modeling (HBIM). In the HBIM process, it is essential to precede the parametric modeling phase of the building with a detailed 3D survey that allows the acquisition of all geometric information. This methodology, called Scan-to-BIM, involves the use of 3D survey techniques for the production of point clouds as a geometric “database” for parametric modeling. The Scan-to-BIM approach can have several issues relating to the complexity of the survey. The work aims to apply the Scan-to-BIM approach to the survey and modeling of a historical and architectural valuable building to test a survey method, based on integrating different techniques (topography, photogrammetry and laser scanning), that improves the data acquisition phase. The “Real Cantina Borbonica” (Cellar of Royal House of Bourbon) in Partinico (Sicily, Italy) was chosen as a case study. The work has allowed achieving the HBIM of the “Real Cantina Borbonica” and testing an approach based exclusively on a topographic constraint to merge in the same reference system all the survey data (laser scanner and photogrammetric point clouds).


2021 ◽  
Vol 13 (3) ◽  
pp. 461
Author(s):  
Valeria Croce ◽  
Gabriella Caroti ◽  
Livio De Luca ◽  
Kévin Jacquot ◽  
Andrea Piemonte ◽  
...  

This work presents a semi-automatic approach to the 3D reconstruction of Heritage-Building Information Models from point clouds based on machine learning techniques. The use of digital information systems leveraging on three-dimensional (3D) representations in architectural heritage documentation and analysis is ever increasing. For the creation of such repositories, reality-based surveying techniques, such as photogrammetry and laser scanning, allow the fast collection of reliable digital replicas of the study objects in the form of point clouds. Besides, their output is raw and unstructured, and the transition to intelligible and semantic 3D representations is still a scarcely automated and time-consuming process requiring considerable human intervention. More refined methods for 3D data interpretation of heritage point clouds are therefore sought after. In tackling these issues, the proposed approach relies on (i) the application of machine learning techniques to semantically label 3D heritage data by identification of relevant geometric, radiometric and intensity features, and (ii) the use of the annotated data to streamline the construction of Heritage-Building Information Modeling (H-BIM) systems, where purely geometric information derived from surveying is associated with semantic descriptors on heritage documentation and management. The “Grand-Ducal Cloister” dataset, related to the emblematic case study of the Pisa Charterhouse, is discussed.


Heritage ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 47-67 ◽  
Author(s):  
Rocha ◽  
Mateus ◽  
Fernández ◽  
Ferreira

Heritage buildings usually have complex (non-parametric) geometries that turn their digitization through conventional methods in inaccurate and time-consuming processes. When it comes to the survey and representation of historical assets, remote sensing technologies have been playing key roles in the last few years: 3D laser scanning and photogrammetry surveys save time in the field, while proving to be extremely accurate at registering non-regular geometries of buildings. However, the efficient transformation of remote-sensing data into as-built parametric smart models is currently an unsolved challenge. A pragmatic and organized Historic Building Information Modeling (HBIM) methodology is essential in order to obtain a consistent model that can bring benefits and integrate conservation and restoration work. This article addresses the creation of an HBIM model of heritage assets using 3D laser scanning and photogrammetry. Our findings are illustrated in one case study: The Engine House Paços Reais in Lisbon. The paper first describes how and what measures should be taken to plan a careful scan-to-HBIM process. Second, the description of the remote-sensing survey campaign is conducted accordingly and is aimed at a BIM output, including the process of data alignment, cleaning, and merging. Finally, the HBIM modeling phase is described, based on point cloud data.


2019 ◽  
pp. 142-176
Author(s):  
Fabrizio Ivan Apollonio ◽  
Marco Gaiani ◽  
Zheng Sun

Building Information Modeling (BIM) has attracted wide interest in the field of documentation and conservation of Architectural Heritage (AH). Existing approaches focus on converting laser scanned point clouds to BIM objects, but laser scanning is usually limited to planar elements which are not the typical state of AH where free-form and double-curvature surfaces are common. We propose a method that combines low-cost automatic photogrammetric data acquisition techniques with parametric BIM objects founded on Architectural Treatises and a syntax allowing the transition from the archetype to the type. Point clouds with metric accuracy comparable to that from laser scanning allows accurate as-built model semantically integrated with the ideal model from parametric library. The deviation between as-built model and ideal model is evaluated to determine if feature extraction from point clouds is essential to improve the accuracy of as-built BIM.


2021 ◽  
Author(s):  
Yevgeny Milanov ◽  
Vladimir Badenko ◽  
Vladimir Yadykin ◽  
Leonid Perlovsky

Abstract Today there is a gap between a presence of various new equipment on the market which provides streams of various digital data about the environment, in particular in the form of laser scanning point clouds, and the lack of adequate efficient methods and software for information extraction from such data. A solution to the problem of bridging this gap is proposed on the basis of neural modeling field theory and dynamic logic (DL). We present a DL-based method of extracting and analyzing information from hybrid point clouds, which include not only spatial coordinates and intensity, but also the color of each point, and can be from multiple sources including terrestrial, mobile and airborne laser scanning data. The proposed method is significant for creating a fundamental theoretical basis for new application algorithms and software for many new applications, including building information modeling, “smart city” environment, etc. The proposed method is fairly new to solving various problems related to extracting semantically rich information from a nontraditional type of digital data, especially hybrid point clouds created from laser scanning. This method will allow to significantly expand the existing boundaries of knowledge in the field of extraction and analysis of information from various digital data, because neural modeling field theory and DL can improve the performance of relevant calculations and close the existing gap in analysis of digital images.


2019 ◽  
pp. 900-934
Author(s):  
Fabrizio Ivan Apollonio ◽  
Marco Gaiani ◽  
Zheng Sun

Building Information Modeling (BIM) has attracted wide interest in the field of documentation and conservation of Architectural Heritage (AH). Existing approaches focus on converting laser scanned point clouds to BIM objects, but laser scanning is usually limited to planar elements which are not the typical state of AH where free-form and double-curvature surfaces are common. We propose a method that combines low-cost automatic photogrammetric data acquisition techniques with parametric BIM objects founded on Architectural Treatises and a syntax allowing the transition from the archetype to the type. Point clouds with metric accuracy comparable to that from laser scanning allows accurate as-built model semantically integrated with the ideal model from parametric library. The deviation between as-built model and ideal model is evaluated to determine if feature extraction from point clouds is essential to improve the accuracy of as-built BIM.


Author(s):  
Fabrizio Ivan Apollonio ◽  
Marco Gaiani ◽  
Zheng Sun

Building Information Modeling (BIM) has attracted wide interest in the field of documentation and conservation of Architectural Heritage (AH). Existing approaches focus on converting laser scanned point clouds to BIM objects, but laser scanning is usually limited to planar elements which are not the typical state of AH where free-form and double-curvature surfaces are common. We propose a method that combines low-cost automatic photogrammetric data acquisition techniques with parametric BIM objects founded on Architectural Treatises and a syntax allowing the transition from the archetype to the type. Point clouds with metric accuracy comparable to that from laser scanning allows accurate as-built model semantically integrated with the ideal model from parametric library. The deviation between as-built model and ideal model is evaluated to determine if feature extraction from point clouds is essential to improve the accuracy of as-built BIM.


Author(s):  
Abobakr Al-Sakkaf ◽  
Reem Ahmed

Over the past four decades, building modeling has taken numerous forms utilizing available technologies and software. Building information modeling (BIM) has significantly developed with the continuous advancements in the information technology and hardware industries. The evolution of BIM has attracted many researchers to explore its possible applications in modeling buildings and facilities with a humanitarian heritage value. However, researches have not been limited to that, as they later expanded to test the applicability of BIM in progressing the fields of maintenance and rehabilitation, operation and management, and even checking the durability of such buildings against varying circumstances and usability as well. As a result of a deep literature review, this research is developed to provide a critique of the previous studies conducted on the fields of heritage building information modeling (HBIM), the relevant software and equipment used in those studies, as well as case studies and applications used to demonstrate HBIM capabilities. Also, two case studies of Qasr Al Farid and Al-Bugiry buildings in KSA were implemented in this research to demonstrate the capabilities of HBIM in preserving the heritage value of historic buildings and monuments and to provide possible means of archiving the heritage value of those buildings utilizing state-of-the-art technologies. This study is expected to aid governments and decision makers of heritage buildings in understanding the positive impacts of including the HBIM in their management and operational processes, and will also act as a beneficial guiding tool for academic researchers to identify the gaps and limitations in previous studies to work towards overcoming them.


Author(s):  
F. Chiabrando ◽  
M. Lo Turco ◽  
C. Santagati

The paper here presented shows the outcomes of a research/didactic activity carried out within a workshop titled "Digital Invasions. From point cloud to Heritage Building Information Modeling" held at Politecnico di Torino (29<sup>th</sup> September&amp;ndash;5<sup>th</sup> October 2016). The term digital invasions refers to an Italian bottom up project born in the 2013 with the aim of promoting innovative digital ways for the enhancement of Cultural Heritage by the co-creation of cultural contents and its sharing through social media platforms. At this regard, we have worked with students of Architectural Master of Science degree, training them with a multidisciplinary teaching team (Architectural Representation, History of Architecture, Restoration, Digital Communication and Geomatics). The aim was also to test if our students could be involved in a sort of niche crowdsourcing for the creation of a library of H-BOMS (Historical-Building Object Modeling) of architectural elements.


Sign in / Sign up

Export Citation Format

Share Document