scholarly journals ANALYSIS OF SOLAR ENERGY USE FOR MULTI-FLAT BUILDINGS RENOVATION / SAULĖS ENERGIJOS PANAUDOJIMO MODERNIZUOJAMUOSE DAUGIABUČIUOSE ANALIZĖ

2016 ◽  
Vol 8 (4) ◽  
pp. 449-454 ◽  
Author(s):  
Kęstutis Valančius ◽  
Jonas Grigaliūnas

The paper analyses the energy and financial possibilities to install renewable energy sources (solar energy) generating systems when renovating multi-flat buildings. The aim is to analyse solar energy system possibilities for modernization of multi-flat buildings (5-storey, 9-storey and 16-storey), providing detailed conclusions about the appropriateness of the energy systems and financial aspects. It is also intended to determine the optimal technological combinations and solutions to reach the maximum energy benefits. For the research computer simulation tools “EnergyPRO” and “PV*SOL Premium” are chosen. Also actual collected heat and electricity consumption data is used for the analysis. Straipsnyje yra apžvelgiamos ir nagrinėjamos energinės ir finansinės galimybės daugiabučiuose namuose įdiegti atsinaujinančius energijos išteklius (saulės energiją) generuojančias sistemas. Darbo tikslas – išanalizuoti didžiausias saulės energijos sistemų panaudojimo galimybes, modernizuojant (5-ių aukštų, 9-ių aukštų ir 16-os aukštų) daugiabučius pastatus, pateikiant išsamias išvadas apie šių sistemų tinkamumą energiniu ir finansiniu aspektais. Siekiama nustatyti optimalius technologinius derinius ir sprendinius, kurių energinė vertė būtų didžiausia. Tyrime pasirinktas būdas yra naujų sistemų modeliavimas kompiuterinėmis ,,EnergyPRO“ ir ,,PV*SOL Premium“ programomis. Taip pat naudojami sukaupti faktiniai šilumos ir elektros energiniai individualių daugiabučių duomenys. Šie duomenys apima visus 2015 metus, kai atitinkamai ant 5-ių aukštų daugiabučio stogo ir 9-ių aukštų daugiabučio fasado sumontuotais prietaisais buvo kaupiami saulės spinduliuotės duomenys.

Author(s):  
Jorge Morales Pedraza

Cuba, a small island in the Caribbean Sea with a total land area of 109.884 km2 and a population of around 11.423 million, has no significant proved oil, gas and coal reserves. Also use, in a very limited manner, some of the four main renewable energy sources available in the country for electricity production, generating just 50,1 GW/h or 4,04% of the total electricity consumed in 2015 (20.288 GW/h). In 2016, electricity consumption fell to 15.182 GW/h; this means a reduction of 25% in comparison to 2015. In 2016, the participation of renewable energy sources in the energy mix of the country reached 4,65%. The different renewable energy sources available in the country are hydropower, wind power, solar photovoltaic, and bioenergy. In 2015, out of Cuba’s total 566 MW of renewable energy capacity installed, 83% of the total was in the bioenergy sector. In 2016, the renewable energy capacity installed in the country reached 642 MW. According to the decision adopted by the Cuban government, the participation of renewable energy sources in the energy mix of the country should reach 24% in 2030, an increase of almost 20% compared to the level reported in 2016. Among the different renewable energy sources available in the country, solar energy is one of the main contributors to the national energy system, and also one of the leading supplier of energy to independent users all over the country.


Author(s):  
Sergiy Korinnyi ◽  
Mariia Mikhailutsa ◽  
Anastasiia Bondarenko

The article examines a set of issues related to "green energy" in the world, problems and opportunities from the introduction of alternative energy sources for greening the economy, developing sustainable economy and preserving human potential. Analytical works of some Ukrainian authors have been studied, in which the current state, obstacles to the realization and prospects of "green energy" in the world have been determined. The purpose of the article is to refute the allegations about the need to immediately stop the introduction of "green technologies", including the construction of solar stations. There are two opposing views on the need for green energy, which have been being discussed around the world for the past few decades. The most popular evidence from both sides on this issue is given, in particular, that the planet can be saved only through the active use of renewable energy sources, and on the other hand, that "green energy" at the current level of human development will cause even more environmental and economic problems. The arguments most often expressed by opponents of the active introduction of "green energy" are highlighted, namely: the high cost of new technologies compared to existing types of generation; the inability of "green energy" to solve the problem of warming on the planet with reference to scientific research on the amount of CO2 emissions from different types of generation as a major factor in warming; danger to the energy systems of all countries of the world due to the instability of energy production by natural factors. Counter-arguments on these issues are provided and evidence of the ability and necessity to use clean technologies is provided. The problem, on which the opinions of both parties coincide, is highlighted - the reluctance of "green" investors to spend money on storage systems, energy storage and stabilization of energy systems due to their high cost, size, insufficient energy consumption and insufficient duration of work. It is noted that the issue of developing the latest energy storage and stabilization systems and their installation at new and existing RES stations needs to be addressed immediately, but is not an obstacle to the further development of green energy.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Dragana Milosavljević ◽  
Tomislav Pavlovic ◽  
Dragoljub Mirjanić ◽  
Danica Piršl

This paper reviews the current state of the renewable energy use in Serbia. Further on, the paper describes energy potential and gives examples of the use of solar energy, wind energy, hydropower, geothermal energy, biomass and biogas in Serbia. Extensive body of information is given about support systems and measures of incentives for the investment in the construction and sale of electricity from plants using renewable energy sources. In conclusion, achieved results of the use of renewable energy sources in Serbia and the incentives for their use are presented.


2020 ◽  
Vol 197 ◽  
pp. 01003
Author(s):  
Lorenzo Mario Pastore ◽  
Gianluigi Lo Basso ◽  
Matteo Sforzini ◽  
Livio de Santoli

The growing penetration of non-programmable energy sources will largely contribute to intensify the renewable capacity firming issues. Providing a higher systems flexibility, i.e. the ability to match the supply and the demand sides as much as possible, is the main challenge to cope with, by adopting new energy planning paradigms. In this framework, different combined strategies, aiming at efficiently integrating that large amount of variable RES (VRES), have to be implemented. In the recent years, the Smart Energy Systems (SES) concept has been introduced to overcome the single-sector approach, promoting a holistic and integrated vision. By that approach, it is possible to exploit synergies between different energy sectors so as to identify the best technical options to globally reduce the primary fossil energy consumption. Starting from a quantitative and qualitative analysis of the most recent international studies dealing with the SES approach, the aim of this paper is to critically review and analyse the role of the main potential flexibility measures applied in the energy planning sector. In detail, Power-to-X and Demand Side Management (DSM) application have been considered, highlighting strengths and weaknesses of such strategies to accomplish the ambitious target of 100% renewable. From this literature review, it emerges how a single strategy adoption is not enough to guarantee the required flexibility level for the whole energy system. Indeed, the best configuration can be attained by integrating different options matching all the external constraints.


Author(s):  
Lynette Morgan

Abstract This chapter discusses the greenhouse environment and its energy use. Its heating, cooling, shading, ventilation and air movement, humidity, carbon dioxide enrichment, automation, energy use and conservation in protected cropping, renewable energy sources for protected cropping such as geothermal energy, solar energy, passive solar energy, wind-generated energy, biomass and biofuels are also discussed.


Author(s):  
M. V. Debiev

The article provides an overview of the current state of energy in the world and in Russia, which focuses on the development of renewable energy sources (RES). An analysis is made of the trend in the production and consumption of energy resources, as well as an assessment of the use of renewable energy in Russia. Incentives for the development of renewable energy sources with the characteristics available in the world are determined. Conclusions are drawn about the importance of developing this industry both in Russia and in the Chechen Republic, as one of its regions. An assessment is given of the development of wind and solar energy in Russia. The current power supply structure of the Chechen Republic is considered, where the indicators of maximum electric power, consumed electric power, and also electric power generation of the republic are given. The analysis of the possibility of using wind and solar energy resources, as well as small hydropower of the Chechen Republic. Options for the development and effective use of renewable energy sources are considered, taking into account the fact that the use of energy resources based on modern innovative technologies, the introduction of new promising alternative sources, and the search for ways to stimulate the use of renewable energy sources, where it is supposed to organize and introduce a tariff policy, is one of the main tasks of energy development which give a complete systemic idea of the scale of the problem of transferring the energy system to innovative rails. Some options are proposed for the most expedient development of the energy system of the Chechen Republic, the construction of small pilot plants using renewable energy sources, with the goal of actual (experimental) confirmation of the predicted calculated values, as well as the gradual mass introduction of plants using renewable energy sources in the private sector with the creation of the necessary tariff conditions for use and construction installations on an industrial scale within the framework of energy private or public companies. Priority tasks have been set for the prospective development of the republic’s energy sector by introducing renewable energy sources.


Author(s):  
A. T. D. Perera

The importance of integrating renewable energy sources into standalone energy systems is highlighted in recent literature. Maintaining energy efficiency is challenging in designing such hybrid energy systems (HES) due to seasonal variation of renewable energy potential. This study evaluates the limitations in minimizing the losses in renewable energy generated mainly due to energy storage limitations and minimizing fuel consumption of the internal combustion generator (ICG). A standalone hybrid energy system with Solar PV (SPV), wind, battery bank and an ICG is modeled and optimized in this work. Levelized Energy Cost (LEC), Waste of Renewable Energy (WRE) and Fuel Consumption (FC) are taken as objective functions. Results highlight the importance of considering WRE as an objective function which increase the mix of energy sources that can help to increase the reliability of the system.


2014 ◽  
Vol 22 (2) ◽  
pp. 34-43 ◽  
Author(s):  
Justyna Chodkowska-Miszczuk

Abstract Small-scale renewable energy systems in the context of the development of distributed generation, are discussed for the case of Poland. A distributed energy system is efficient, reliable and environmentally friendly, and is one of the most recent trends in the development of the energy sector in Poland. One of the important dimensions of this process is the creation of micro- and small-power producers based on renewable, locally-available energy sources. It is clear that the development of small-scale renewable energy producers takes place in two ways. One of these is through small hydropower plants, which are the aftermath of hydropower development in areas traditionally associated with water use for energy purposes (northern and western Poland). The second is through other renewable energy sources, mainly biogas and solar energy and located primarily in southern Poland, in highly urbanized areas (e.g. Śląskie Voivodship). In conclusion, the development of small-scale renewable energy systems in Poland is regarded as a good option with respect to sustainable development.


Sign in / Sign up

Export Citation Format

Share Document