Corrigendum: “On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate Suppression Due to Black Hole Event Horizons” (2018, ApJ, 852, 72)

2018 ◽  
Vol 868 (2) ◽  
pp. 154
Author(s):  
S. van Velzen
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tomas Andrade ◽  
Christiana Pantelidou ◽  
Julian Sonner ◽  
Benjamin Withers

Abstract General relativity governs the nonlinear dynamics of spacetime, including black holes and their event horizons. We demonstrate that forced black hole horizons exhibit statistically steady turbulent spacetime dynamics consistent with Kolmogorov’s theory of 1941. As a proof of principle we focus on black holes in asymptotically anti-de Sitter spacetimes in a large number of dimensions, where greater analytic control is gained. We focus on cases where the effective horizon dynamics is restricted to 2+1 dimensions. We also demonstrate that tidal deformations of the horizon induce turbulent dynamics. When set in motion relative to the horizon a deformation develops a turbulent spacetime wake, indicating that turbulent spacetime dynamics may play a role in binary mergers and other strong-field phenomena.


2020 ◽  
Vol 904 (1) ◽  
pp. 73
Author(s):  
Taeho Ryu ◽  
Julian Krolik ◽  
Tsvi Piran

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Misbah Shahzadi ◽  
Martin Kološ ◽  
Zdeněk Stuchlík ◽  
Yousaf Habib

AbstractThe study of the quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole (BH) binaries or quasars can provide a powerful tool for testing the phenomena occurring in strong gravity regime. We thus fit the data of QPOs observed in the well known microquasars as well as active galactic nuclei (AGNs) in the framework of the model of geodesic oscillations of Keplerian disks modified for the epicyclic oscillations of spinning test particles orbiting Kerr BHs. We show that the modified geodesic models of QPOs can explain the observational fixed data from the microquasars and AGNs but not for all sources. We perform a successful fitting of the high frequency QPOs models of epicyclic resonance and its variants, relativistic precession and its variants, tidal disruption, as well as warped disc models, and discuss the corresponding constraints of parameters of the model, which are the spin of the test particle, mass and rotation of the BH.


2006 ◽  
Vol 2006 (02) ◽  
pp. 025-025 ◽  
Author(s):  
Craig Helfgott ◽  
Yaron Oz ◽  
Yariv Yanay

2019 ◽  
Vol 485 (3) ◽  
pp. 4413-4422 ◽  
Author(s):  
Daniel J D’Orazio ◽  
Abraham Loeb ◽  
James Guillochon

ABSTRACT The rate of tidal disruption flares (TDFs) per mass of the disrupting black hole encodes information on the present-day mass function (PDMF) of stars in the clusters surrounding super massive black holes. We explore how the shape of the TDF rate with black hole mass can constrain the PDMF, with only weak dependence on black hole spin. We show that existing data can marginally constrain the minimum and maximum masses of stars in the cluster, and the high-mass end of the PDMF slope, as well as the overall TDF rate. With $\mathcal {O}(100)$ TDFs expected to be identified with the Zwicky Transient Facility, the overall rate can be highly constrained, but still with only marginal constraints on the PDMF. However, if ${\lesssim } 10 {{\ \rm per\ cent}}$ of the TDFs expected to be found by LSST over a decade ($\mathcal {O}(10^3)$ TDFs) are identified, then precise and accurate estimates can be made for the minimum stellar mass (within a factor of 2) and the average slope of the high-mass PDMF (to within $\mathcal {O}(10{{\ \rm per\ cent}})$) in nuclear star clusters. This technique could be adapted in the future to probe, in addition to the PDMF, the local black hole mass function and possibly the massive black hole binary population.


2020 ◽  
Vol 35 (10) ◽  
pp. 2050070
Author(s):  
Ujjal Debnath

We study the four-dimensional (i) modified Bardeen black hole, (ii) modified Hayward black hole, (iii) charged regular black hole and (iv) magnetically charged regular black hole. For modified Bardeen black hole and modified Hayward black hole, we found only one horizon (event horizon) and then we found some thermodynamic quantities like the entropy, surface area, irreducible mass, temperature, Komar energy and specific heat capacity on the event horizon. We here study the bounds of the above thermodynamic quantities for these black holes on the event horizon. Then, we examine the thermodynamics stability of the black holes with some conditions. Next, we studied the charged regular black hole and magnetically charged regular black hole and found two horizons (Cauchy and event horizons) of these black holes. Then, we found the entropy, surface area, irreducible mass, temperature, Komar energy and specific heat capacity on the Cauchy and event horizons. Then, we get some conditions for thermodynamic stability/instability of the black holes. We found the radius of the extremal horizon and Christodoulou–Ruffiini mass and then analyze the above thermodynamic quantities on the extremal horizon. We calculate the sum/subtraction, product, division and sum/subtraction of inverse of surface areas, entropies, irreducible masses, temperatures, Komar energies and specific heat capacities on both the horizons. From these, we found the bounds of the above quantities on the horizons.


2018 ◽  
Vol 3 (12) ◽  
pp. 491-501 ◽  
Author(s):  
Marcel Franz ◽  
Moshe Rozali

Sign in / Sign up

Export Citation Format

Share Document