scholarly journals On the (Lack of) Evolution of the Stellar Mass Function of Massive Galaxies from z = 1.5 to 0.4

2020 ◽  
Vol 892 (1) ◽  
pp. 7 ◽  
Author(s):  
Lalitwadee Kawinwanichakij ◽  
Casey Papovich ◽  
Robin Ciardullo ◽  
Steven L. Finkelstein ◽  
Matthew L. Stevans ◽  
...  
2019 ◽  
Vol 485 (3) ◽  
pp. 4413-4422 ◽  
Author(s):  
Daniel J D’Orazio ◽  
Abraham Loeb ◽  
James Guillochon

ABSTRACT The rate of tidal disruption flares (TDFs) per mass of the disrupting black hole encodes information on the present-day mass function (PDMF) of stars in the clusters surrounding super massive black holes. We explore how the shape of the TDF rate with black hole mass can constrain the PDMF, with only weak dependence on black hole spin. We show that existing data can marginally constrain the minimum and maximum masses of stars in the cluster, and the high-mass end of the PDMF slope, as well as the overall TDF rate. With $\mathcal {O}(100)$ TDFs expected to be identified with the Zwicky Transient Facility, the overall rate can be highly constrained, but still with only marginal constraints on the PDMF. However, if ${\lesssim } 10 {{\ \rm per\ cent}}$ of the TDFs expected to be found by LSST over a decade ($\mathcal {O}(10^3)$ TDFs) are identified, then precise and accurate estimates can be made for the minimum stellar mass (within a factor of 2) and the average slope of the high-mass PDMF (to within $\mathcal {O}(10{{\ \rm per\ cent}})$) in nuclear star clusters. This technique could be adapted in the future to probe, in addition to the PDMF, the local black hole mass function and possibly the massive black hole binary population.


2010 ◽  
Vol 725 (1) ◽  
pp. 1277-1295 ◽  
Author(s):  
Danilo Marchesini ◽  
Katherine E. Whitaker ◽  
Gabriel Brammer ◽  
Pieter G. van Dokkum ◽  
Ivo Labbé ◽  
...  

2020 ◽  
Vol 496 (3) ◽  
pp. 3169-3181
Author(s):  
Makoto Ando ◽  
Kazuhiro Shimasaku ◽  
Rieko Momose

ABSTRACT A proto-cluster core is the most massive dark matter halo (DMH) in a given proto-cluster. To reveal the galaxy formation in core regions, we search for proto-cluster cores at z ∼ 2 in ${\sim}1.5\, \mathrm{deg}^{2}$ of the COSMOS field. Using pairs of massive galaxies [log (M*/M⊙) ≥ 11] as tracers of cores, we find 75 candidate cores, among which 54 per cent are estimated to be real. A clustering analysis finds that these cores have an average DMH mass of $2.6_{-0.8}^{+0.9}\times 10^{13}\, \mathrm{M}_{\odot }$, or $4.0_{-1.5}^{+1.8}\, \times 10^{13} \, \mathrm{M}_{\odot }$ after contamination correction. The extended Press–Schechter model shows that their descendant mass at z = 0 is consistent with Fornax-like or Virgo-like clusters. Moreover, using the IllustrisTNG simulation, we confirm that pairs of massive galaxies are good tracers of DMHs massive enough to be regarded as proto-cluster cores. We then derive the stellar mass function (SMF) and the quiescent fraction for member galaxies of the 75 candidate cores. We find that the core galaxies have a more top-heavy SMF than field galaxies at the same redshift, showing an excess at log (M*/M⊙) ≳ 10.5. The quiescent fraction, $0.17_{-0.04}^{+0.04}$ in the mass range 9.0 ≤ log (M*/M⊙) ≤ 11.0, is about three times higher than that of field counterparts, giving an environmental quenching efficiency of $0.13_{-0.04}^{+0.04}$. These results suggest that stellar mass assembly and quenching are accelerated as early as z ∼ 2 in proto-cluster cores.


2011 ◽  
Vol 413 (1) ◽  
pp. 162-176 ◽  
Author(s):  
K. I. Caputi ◽  
M. Cirasuolo ◽  
J. S. Dunlop ◽  
R. J. McLure ◽  
D. Farrah ◽  
...  

2019 ◽  
Vol 486 (4) ◽  
pp. 5468-5481 ◽  
Author(s):  
L Legrand ◽  
H J McCracken ◽  
I Davidzon ◽  
O Ilbert ◽  
J Coupon ◽  
...  

Abstract Using precise galaxy stellar mass function measurements in the COSMOS field we determine the stellar-to-halo mass relationship (SHMR) using a parametric abundance matching technique. The unique combination of size and highly complete stellar mass estimates in COSMOS allows us to determine the SHMR over a wide range of halo masses from z ∼ 0.2 to 5. At z ∼ 0.2, the ratio of stellar-to-halo mass content peaks at a characteristic halo mass Mh = 1012M⊙ and declines at higher and lower halo masses. This characteristic halo mass increases with redshift reaching Mh = 1012.5M⊙ at z ∼ 2.3 and remaining flat up to z = 4. We considered the principal sources of uncertainty in our stellar mass measurements and also the variation in halo mass estimates in the literature. We show that our results are robust to these sources of uncertainty and explore likely explanation for differences between our results and those published in the literature. The steady increase in characteristic halo mass with redshift points to a scenario where cold gas inflows become progressively more important in driving star formation at high redshifts, but larger samples of massive galaxies are needed to rigorously test this hypothesis.


2019 ◽  
Vol 15 (S359) ◽  
pp. 166-167
Author(s):  
Makoto Ando ◽  
Kazuhiro Shimasaku ◽  
Rieko Momose

AbstractA proto-cluster core is the most massive dark matter halo (DMH) in a given proto-cluster. To reveal the galaxy formation in core regions, we search for proto-cluster cores at z ˜ 2 in ˜1.5deg2 of the COSMOS field. Using pairs of massive galaxies (log (M*/Mʘ) ≥ 11) as tracers of cores, we find 75 candidate cores. A clustering analysis and the extended Press-Schechter model show that their descendant mass at z = 0 is consistent with Fornax-like or Virgo-like clusters. Moreover, using the IllustrisTNG simulation, we confirm that pairs of massive galaxies are good tracers of DMHs massive enough to be regarded as proto-cluster cores. We then derive the stellar mass function and the quiescent fraction for member galaxies of the 75 candidate cores. We find that stellar mass assembly and quenching are accelerated as early as z ˜ 2 in proto-cluster cores.


2021 ◽  
Vol 909 (1) ◽  
pp. 74
Author(s):  
Tim B. Miller ◽  
Pieter van Dokkum ◽  
Shany Danieli ◽  
Jiaxuan Li ◽  
Roberto Abraham ◽  
...  

2020 ◽  
Vol 493 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Shuiyao Huang ◽  
Neal Katz ◽  
Romeel Davé ◽  
Benjamin D Oppenheimer ◽  
David H Weinberg ◽  
...  

ABSTRACT Many phenomenologically successful cosmological simulations employ kinetic winds to model galactic outflows. Yet systematic studies of how variations in kinetic wind scalings might alter observable galaxy properties are rare. Here we employ gadget-3 simulations to study how the baryon cycle, stellar mass function, and other galaxy and CGM predictions vary as a function of the assumed outflow speed and the scaling of the mass-loading factor with velocity dispersion. We design our fiducial model to reproduce the measured wind properties at 25 per cent of the virial radius from the Feedback In Realistic Environments simulations. We find that a strong dependence of η ∼ σ5 in low-mass haloes with $\sigma \lt 106\mathrm{\, km\, s^{-1}}$ is required to match the faint end of the stellar mass functions at $z$ > 1. In addition, faster winds significantly reduce wind recycling and heat more halo gas. Both effects result in less stellar mass growth in massive haloes and impact high ionization absorption in halo gas. We cannot simultaneously match the stellar content at $z$ = 2 and 0 within a single model, suggesting that an additional feedback source such as active galactic nucleus might be required in massive galaxies at lower redshifts, but the amount needed depends strongly on assumptions regarding the outflow properties. We run a 50 $\mathrm{Mpc}\, h^{-1}$, 2 × 5763 simulation with our fiducial parameters and show that it matches a range of star-forming galaxy properties at $z$ ∼ 0–2.


2020 ◽  
Vol 494 (4) ◽  
pp. 5568-5575 ◽  
Author(s):  
R A Jackson ◽  
G Martin ◽  
S Kaviraj ◽  
C Laigle ◽  
J E G Devriendt ◽  
...  

ABSTRACT Galaxy merger histories correlate strongly with stellar mass, largely regardless of morphology. Thus, at fixed stellar mass, spheroids and discs share similar assembly histories, both in terms of the frequency of mergers and the distribution of their mass ratios. Since mergers drive disc-to-spheroid morphological transformation, and the most massive galaxies typically have the richest merger histories, it is surprising that discs exist at all at the highest stellar masses (e.g. beyond the knee of the mass function). Using Horizon-AGN, a cosmological hydroynamical simulation, we show that extremely massive (M* > 1011.4 M⊙) discs are created via two channels. In the primary channel (accounting for 70${\rm {per\ cent}}$ of these systems and 8${\rm {per\ cent}}$ of massive galaxies), the most recent, significant (mass ratio > 1:10) merger between a massive spheroid and a gas-rich satellite ‘spins up’ the spheroid by creating a new rotational stellar component, leaving a massive disc as the remnant. In the secondary channel (accounting for 30 ${\rm {per\ cent}}$ of these systems and 3 ${\rm {per\ cent}}$ of massive galaxies), a system maintains a disc throughout its lifetime, due to an anomalously quiet merger history. Not unexpectedly, the fraction of massive discs increases towards higher redshift, due to the Universe being more gas-rich. The morphological mix of galaxies at the highest stellar masses is, therefore, a strong function of the gas fraction of the Universe. Finally, these massive discs have similar black hole masses and accretion rates to massive spheroids, providing a natural explanation for why some powerful AGN are surprisingly found in disc galaxies.


2019 ◽  
Vol 486 (3) ◽  
pp. 3059-3077 ◽  
Author(s):  
Dominic J Bates ◽  
Rita Tojeiro ◽  
Jeffrey A Newman ◽  
Violeta Gonzalez-Perez ◽  
Johan Comparat ◽  
...  

Abstract This paper presents stellar mass functions and i-band luminosity functions for Sloan Digital Sky Survey (SDSS) galaxies with i < 21 using clustering redshifts. From these measurements, we also compute targeting completeness measurements for the Baryon Oscillation Spectroscopic Survey (BOSS). Clustering redshifts is a method of obtaining the redshift distribution of a sample of galaxies with only photometric information by measuring the angular cross-correlation with a spectroscopic sample in different redshift bins. We construct a spectroscopic sample containing data from the BOSS + eBOSS surveys, allowing us to recover redshift distributions from photometric data out to z ≃ 2.5. We produce k-corrected i-band luminosity functions and stellar mass functions by applying clustering redshifts to SDSS DR8 galaxies in small bins of colour and magnitude. There is little evolution in the mass function between 0.2 < z < 0.8, implying that the most massive galaxies form most of their mass before z = 0.8. These mass functions are used to produce stellar mass completeness estimates for the BOSS, giving a stellar mass completeness of $80{{\ \rm per\ cent}}$ above M⋆ > 1011.4 between 0.2 < z < 0.7, with completeness falling significantly at redshifts higher than 0.7, and at lower masses. Large photometric data sets will be available in the near future (DECaLS, DES, Euclid), so this and similar techniques will become increasingly useful in order to fully utilize these data.


Sign in / Sign up

Export Citation Format

Share Document