scholarly journals Massive Black Hole Merger Rates: The Effect of Kiloparsec Separation Wandering and Supernova Feedback

2020 ◽  
Vol 904 (1) ◽  
pp. 16 ◽  
Author(s):  
Enrico Barausse ◽  
Irina Dvorkin ◽  
Michael Tremmel ◽  
Marta Volonteri ◽  
Matteo Bonetti
2000 ◽  
Vol 119 (3) ◽  
pp. 1157-1171 ◽  
Author(s):  
Karl Gebhardt ◽  
Douglas Richstone ◽  
John Kormendy ◽  
Tod R. Lauer ◽  
Edward A. Ajhar ◽  
...  

2009 ◽  
Vol 692 (2) ◽  
pp. 1075-1109 ◽  
Author(s):  
S. Gillessen ◽  
F. Eisenhauer ◽  
S. Trippe ◽  
T. Alexander ◽  
R. Genzel ◽  
...  

Author(s):  
Hajime Inoue

Abstract We investigate a mechanism for a super-massive black hole at the center of a galaxy to wander in the nucleus region. A situation is supposed in which the central black hole tends to move by the gravitational attractions from the nearby molecular clouds in a nuclear bulge but is braked via the dynamical frictions from the ambient stars there. We estimate the approximate kinetic energy of the black hole in an equilibrium between the energy gain rate through the gravitational attractions and the energy loss rate through the dynamical frictions in a nuclear bulge composed of a nuclear stellar disk and a nuclear stellar cluster as observed from our Galaxy. The wandering distance of the black hole in the gravitational potential of the nuclear bulge is evaluated to get as large as several 10 pc, when the black hole mass is relatively small. The distance, however, shrinks as the black hole mass increases, and the equilibrium solution between the energy gain and loss disappears when the black hole mass exceeds an upper limit. As a result, we can expect the following scenario for the evolution of the black hole mass: When the black hole mass is smaller than the upper limit, mass accretion of the interstellar matter in the circumnuclear region, causing the AGN activities, makes the black hole mass larger. However, when the mass gets to the upper limit, the black hole loses the balancing force against the dynamical friction and starts spiraling downward to the gravity center. From simple parameter scaling, the upper mass limit of the black hole is found to be proportional to the bulge mass, and this could explain the observed correlation of the black hole mass with the bulge mass.


2020 ◽  
Vol 15 (S359) ◽  
pp. 280-282
Author(s):  
Gustavo Amaral Lanfranchi ◽  
Anderson Caproni ◽  
Jennifer F. Soares ◽  
Larissa S. de Oliveira

AbstractThe gas evolution of a typical Dwarf Spheroidal Galaxy is investigated by means of 3D hydrodynamic simulations, taking into account the feedback of type II and Ia supernovae, the outflow of an Intermediate Massive Black Hole (IMBH) and a static cored dark matter potential. When the IMBH’s outflow is simulated in an homogeneous medium a jet structure is created and a small fraction of the gas is pushed away from the galaxy. No jet structure can be seen, however, when the medium is disturbed by supernovae, but gas is still pushed away. In this case, the main driver of the gas removal are the supernovae. The interplay between the stellar feedback and the IMBH’s outflow should be taken into account.


2019 ◽  
Vol 15 (S359) ◽  
pp. 312-317
Author(s):  
Francoise Combes

AbstractGas fueling AGN (Active Galaxy Nuclei) is now traceable at high-resolution with ALMA (Atacama Large Millimeter Array) and NOEMA (NOrthern Extended Millimeter Array). Dynamical mechanisms are essential to exchange angular momentum and drive the gas to the super-massive black hole. While at 100pc scale, the gas is sometimes stalled in nuclear rings, recent observations reaching 10pc scale (50mas), may bring smoking gun evidence of fueling, within a randomly oriented nuclear gas disk. AGN feedback is also observed, in the form of narrow and collimated molecular outflows, which point towards the radio mode, or entrainment by a radio jet. Precession has been observed in a molecular outflow, indicating the precession of the radio jet. One of the best candidates for precession is the Bardeen-Petterson effect at small scale, which exerts a torque on the accreting material, and produces an extended disk warp. The misalignment between the inner and large-scale disk, enhances the coupling of the AGN feedback, since the jet sweeps a large part of the molecular disk.


Author(s):  
Jianwei Mei ◽  
Yan-Zheng Bai ◽  
Jiahui Bao ◽  
Enrico Barausse ◽  
Lin Cai ◽  
...  

Abstract TianQin is a planned space-based gravitational wave (GW) observatory consisting of three Earth-orbiting satellites with an orbital radius of about $10^5 \, {\rm km}$. The satellites will form an equilateral triangle constellation the plane of which is nearly perpendicular to the ecliptic plane. TianQin aims to detect GWs between $10^{-4} \, {\rm Hz}$ and $1 \, {\rm Hz}$ that can be generated by a wide variety of important astrophysical and cosmological sources, including the inspiral of Galactic ultra-compact binaries, the inspiral of stellar-mass black hole binaries, extreme mass ratio inspirals, the merger of massive black hole binaries, and possibly the energetic processes in the very early universe and exotic sources such as cosmic strings. In order to start science operations around 2035, a roadmap called the 0123 plan is being used to bring the key technologies of TianQin to maturity, supported by the construction of a series of research facilities on the ground. Two major projects of the 0123 plan are being carried out. In this process, the team has created a new-generation $17 \, {\rm cm}$ single-body hollow corner-cube retro-reflector which was launched with the QueQiao satellite on 21 May 2018; a new laser-ranging station equipped with a $1.2 \, {\rm m}$ telescope has been constructed and the station has successfully ranged to all five retro-reflectors on the Moon; and the TianQin-1 experimental satellite was launched on 20 December 2019—the first-round result shows that the satellite has exceeded all of its mission requirements.


2006 ◽  
Vol 2 (S238) ◽  
pp. 431-432
Author(s):  
Luka Č Popović ◽  
Predrag Jovanović

AbstractHere we discuss the possibility to use gravitational microlensing in order to probe the geometry around a massive black hole. Taking into account that lensed quasars are emitting X-rays which come from the heart of these objects, we investigated the influence of microlensing on the Fe Kα line shape originated in Schwarzschild and Kerr metrics.


Sign in / Sign up

Export Citation Format

Share Document