scholarly journals Two-component Magnetic Field along the Line of Sight to the Perseus Molecular Cloud: Contribution of the Foreground Taurus Molecular Cloud

2021 ◽  
Vol 914 (2) ◽  
pp. 122
Author(s):  
Yasuo Doi ◽  
Tetsuo Hasegawa ◽  
Pierre Bastien ◽  
Mehrnoosh Tahani ◽  
Doris Arzoumanian ◽  
...  
Author(s):  
Fumitaka Nakamura ◽  
Seiji Kameno ◽  
Takayoshi Kusune ◽  
Izumi Mizuno ◽  
Kazuhito Dobashi ◽  
...  

Abstract We report the first clear detection of the Zeeman splitting of a CCS emission line at 45 GHz toward the nearby pre-stellar dense filament, Taurus Molecular Cloud 1 (TMC-1). We observed HC$_3$N non-Zeeman lines simultaneously with the CCS line, and did not detect any significant splitting of the HC$_3$N lines. Thus, we conclude that our detection of CCS Zeeman splitting is robust. The derived line-of-sight magnetic field strength is about $117 \pm 21 \, \mu$G, which corresponds to a normalized mass-to-magnetic flux ratio of 2.2 if we adopt an inclination angle of 45$^\circ$. Thus, we conclude that the TMC-1 filament is magnetically supercritical. Recent radiative transfer calculations of the CCS and HC$_3$N lines along the line of sight suggest that the filament is collapsing with a speed of $\sim$0.6 km s$^{-1}$, which is comparable to three times the isothermal sound speed. This infall velocity appears to be consistent with the evolution of a gravitationally infalling core.


2020 ◽  
Vol 496 (4) ◽  
pp. 4546-4564
Author(s):  
M Heyer ◽  
J D Soler ◽  
B Burkhart

ABSTRACT We examine the role of the interstellar magnetic field to modulate the orientation of turbulent flows within the Taurus molecular cloud using spatial gradients of thin velocity slices of 12CO and 13CO antenna temperatures. Our analysis accounts for the random errors of the gradients that arise from the thermal noise of the spectra. The orientations of the vectors normal to the antenna temperature gradient vectors are compared to the magnetic field orientations that are calculated from Planck 353 GHz polarization data. These relative orientations are parameterized with the projected Rayleigh statistic and mean resultant vector. For 12CO,   strongly parallel and strongly perpendicular relative orientations are found in 28 percent and 39 percent of the cloud area respectively. For the lower opacity 13CO emission, strongly parallel and strongly perpendicular orientations are found in 7 per cent and 43 per cent of the cloud area, respectively. For both isotopologues, strongly parallel or perpendicular alignments are restricted to localized regions with low levels of turbulence. If the relative orientations serve as an observational proxy to the Alfvénic Mach number then our results imply local variations of the Alfvénic Mach number throughout the cloud.


2018 ◽  
Vol 864 (1) ◽  
pp. 82 ◽  
Author(s):  
Kazuhito Dobashi ◽  
Tomomi Shimoikura ◽  
Fumitaka Nakamura ◽  
Seiji Kameno ◽  
Izumi Mizuno ◽  
...  

1999 ◽  
Vol 515 (1) ◽  
pp. 275-285 ◽  
Author(s):  
R. M. Crutcher ◽  
D. A. Roberts ◽  
T. H. Troland ◽  
W. M. Goss

1993 ◽  
Vol 138 ◽  
pp. 305-309
Author(s):  
Marco Landolfi ◽  
Egidio Landi Degl’Innocenti ◽  
Maurizio Landi Degl’Innocenti ◽  
Jean-Louis Leroy ◽  
Stefano Bagnulo

AbstractBroadband linear polarization in the spectra of Ap stars is believed to be due to differential saturation between σ and π Zeeman components in spectral lines. This mechanism has been known for a long time to be the main agent of a similar phenomenon observed in sunspots. Since this phenomenon has been carefully calibrated in the solar case, it can be confidently used to deduce the magnetic field of Ap stars.Given the magnetic configuration of a rotating star, it is possible to deduce the broadband polarization at any phase. Calculations performed for the oblique dipole model show that the resulting polarization diagrams are very sensitive to the values of i (the angle between the rotation axis and the line of sight) and β (the angle between the rotation and magnetic axes). The dependence on i and β is such that the four-fold ambiguity typical of the circular polarization observations ((i,β), (β,i), (π-i,π-β), (π-β,π-i)) can be removed.


2020 ◽  
Vol 498 (2) ◽  
pp. 2440-2455
Author(s):  
Yuxuan (宇轩) Yuan (原) ◽  
Mark R Krumholz ◽  
Blakesley Burkhart

ABSTRACT Molecular line observations using a variety of tracers are often used to investigate the kinematic structure of molecular clouds. However, measurements of cloud velocity dispersions with different lines, even in the same region, often yield inconsistent results. The reasons for this disagreement are not entirely clear, since molecular line observations are subject to a number of biases. In this paper, we untangle and investigate various factors that drive linewidth measurement biases by constructing synthetic position–position–velocity cubes for a variety of tracers from a suite of self-gravitating magnetohydrodynamic simulations of molecular clouds. We compare linewidths derived from synthetic observations of these data cubes to the true values in the simulations. We find that differences in linewidth as measured by different tracers are driven by a combination of density-dependent excitation, whereby tracers that are sensitive to higher densities sample smaller regions with smaller velocity dispersions, opacity broadening, especially for highly optically thick tracers such as CO, and finite resolution and sensitivity, which suppress the wings of emission lines. We find that, at fixed signal-to-noise ratio, three commonly used tracers, the J = 4 → 3 line of CO, the J = 1 → 0 line of C18O, and the (1,1) inversion transition of NH3, generally offer the best compromise between these competing biases, and produce estimates of the velocity dispersion that reflect the true kinematics of a molecular cloud to an accuracy of $\approx 10{{\ \rm per\ cent}}$ regardless of the cloud magnetic field strengths, evolutionary state, or orientations of the line of sight relative to the magnetic field. Tracers excited primarily in gas denser than that traced by NH3 tend to underestimate the true velocity dispersion by $\approx 20{{\ \rm per\ cent}}$ on average, while low-density tracers that are highly optically thick tend to have biases of comparable size in the opposite direction.


Sign in / Sign up

Export Citation Format

Share Document