scholarly journals The relative orientation between the magnetic field and gradients of surface brightness within thin velocity slices of 12CO and 13CO emission from the Taurus molecular cloud

2020 ◽  
Vol 496 (4) ◽  
pp. 4546-4564
Author(s):  
M Heyer ◽  
J D Soler ◽  
B Burkhart

ABSTRACT We examine the role of the interstellar magnetic field to modulate the orientation of turbulent flows within the Taurus molecular cloud using spatial gradients of thin velocity slices of 12CO and 13CO antenna temperatures. Our analysis accounts for the random errors of the gradients that arise from the thermal noise of the spectra. The orientations of the vectors normal to the antenna temperature gradient vectors are compared to the magnetic field orientations that are calculated from Planck 353 GHz polarization data. These relative orientations are parameterized with the projected Rayleigh statistic and mean resultant vector. For 12CO,   strongly parallel and strongly perpendicular relative orientations are found in 28 percent and 39 percent of the cloud area respectively. For the lower opacity 13CO emission, strongly parallel and strongly perpendicular orientations are found in 7 per cent and 43 per cent of the cloud area, respectively. For both isotopologues, strongly parallel or perpendicular alignments are restricted to localized regions with low levels of turbulence. If the relative orientations serve as an observational proxy to the Alfvénic Mach number then our results imply local variations of the Alfvénic Mach number throughout the cloud.

2018 ◽  
Vol 14 (A30) ◽  
pp. 108-108
Author(s):  
Georgia Panopoulou

AbstractTranslucent molecular clouds represent a vastly underexplored regime of cloud evolution in terms of the effect of the magnetic field. Their pristine nature renders them ideal for investigating the initial properties of the magnetic field, prior to the onset of star formation. Using starlight polarimetry, we map the plane-of-sky magnetic field orientation throughout 10 sq. degrees of the Polaris Flare translucent molecular cloud. We provide the first quantitative estimate of the magnetic field strength in this type of system. By combining our measurements with the high-resolution Herschel dust emission map, we find a preferred alignment between filaments and the observed magnetic field. Our results support the presence of a strong magnetic field in this system (Panopoulou et al. 2016).


1999 ◽  
Vol 515 (1) ◽  
pp. 275-285 ◽  
Author(s):  
R. M. Crutcher ◽  
D. A. Roberts ◽  
T. H. Troland ◽  
W. M. Goss

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1168
Author(s):  
Elena Belenkaya ◽  
Ivan Pensionerov

On 14 January 2008, the MESSENGER spacecraft, during its first flyby around Mercury, recorded the magnetic field structure, which was later called the “double magnetopause”. The role of sodium ions penetrating into the Hermean magnetosphere from the magnetosheath in generation of this structure has been discussed since then. The violation of the symmetry of the plasma parameters at the magnetopause is the cause of the magnetizing current generation. Here, we consider whether the change in the density of sodium ions on both sides of the Hermean magnetopause could be the cause of a wide diamagnetic current in the magnetosphere at its dawn-side boundary observed during the first MESSENGER flyby. In the present paper, we propose an analytical approach that made it possible to determine the magnetosheath Na+ density excess providing the best agreement between the calculation results and the observed magnetic field in the double magnetopause.


1995 ◽  
Vol 12 (2) ◽  
pp. 180-185 ◽  
Author(s):  
D. J. Galloway ◽  
C. A. Jones

AbstractThis paper discusses problems which have as their uniting theme the need to understand the coupling between a stellar convection zone and a magnetically dominated corona above it. Interest is concentrated on how the convection drives the atmosphere above, loading it with the currents that give rise to flares and other forms of coronal activity. The role of boundary conditions appears to be crucial, suggesting that a global understanding of the magnetic field system is necessary to explain what is observed in the corona. Calculations are presented which suggest that currents flowing up a flux rope return not in the immediate vicinity of the rope but rather in an alternative flux concentration located some distance away.


2021 ◽  
Author(s):  
Aditya Varma ◽  
Binod Sreenivasan

<p>It is known that the columnar structures in rapidly rotating convection are affected by the magnetic field in ways that enhance their helicity. This may explain the dominance of the axial dipole in rotating dynamos. Dynamo simulations starting from a small seed magnetic field have shown that the growth of the field is accompanied by the excitation of convection in the energy-containing length scales. Here, this process is studied by examining axial wave motions in the growth phase of the dynamo for a wide range of thermal forcing. In the early stages of evolution where the field is weak, fast inertial waves weakly modified by the magnetic field are abundantly present. As the field strength(measured by the ratio of the Alfven wave to the inertial wave frequency) exceeds a threshold value, slow magnetostrophic waves are spontaneously generated. The excitation of the slow waves coincides with the generation of helicity through columnar motion, and is followed by the formation of the axial dipole from a chaotic, multipolar state. In strongly driven convection, the slow wave frequency is attenuated, causing weakening of the axial dipole intensity. Kinematic dynamo simulations at the same parameters, where only fast inertial waves are present, fail to produce the axial dipole field. The dipole field in planetary dynamos may thus be supported by the helicity from slow magnetostrophic waves.</p>


2018 ◽  
Vol 4 (3) ◽  
pp. 36 ◽  
Author(s):  
Anup Kumar ◽  
Prakash Mondal ◽  
Claudio Fontanesi

Magneto-electrochemistry (MEC) is a unique paradigm in science, where electrochemical experiments are carried out as a function of an applied magnetic field, creating a new horizon of potential scientific interest and technological applications. Over time, detailed understanding of this research domain was developed to identify and rationalize the possible effects exerted by a magnetic field on the various microscopic processes occurring in an electrochemical system. Notably, until a few years ago, the role of spin was not taken into account in the field of magneto-electrochemistry. Remarkably, recent experimental studies reveal that electron transmission through chiral molecules is spin selective and this effect has been referred to as the chiral-induced spin selectivity (CISS) effect. Spin-dependent electrochemistry originates from the implementation of the CISS effect in electrochemistry, where the magnetic field is used to obtain spin-polarized currents (using ferromagnetic electrodes) or, conversely, a magnetic field is obtained as the result of spin accumulation.


2008 ◽  
Vol 56 (6) ◽  
pp. 852-855 ◽  
Author(s):  
E. Kallio ◽  
R.A. Frahm ◽  
Y. Futaana ◽  
A. Fedorov ◽  
P. Janhunen

Author(s):  
Fumitaka Nakamura ◽  
Seiji Kameno ◽  
Takayoshi Kusune ◽  
Izumi Mizuno ◽  
Kazuhito Dobashi ◽  
...  

Abstract We report the first clear detection of the Zeeman splitting of a CCS emission line at 45 GHz toward the nearby pre-stellar dense filament, Taurus Molecular Cloud 1 (TMC-1). We observed HC$_3$N non-Zeeman lines simultaneously with the CCS line, and did not detect any significant splitting of the HC$_3$N lines. Thus, we conclude that our detection of CCS Zeeman splitting is robust. The derived line-of-sight magnetic field strength is about $117 \pm 21 \, \mu$G, which corresponds to a normalized mass-to-magnetic flux ratio of 2.2 if we adopt an inclination angle of 45$^\circ$. Thus, we conclude that the TMC-1 filament is magnetically supercritical. Recent radiative transfer calculations of the CCS and HC$_3$N lines along the line of sight suggest that the filament is collapsing with a speed of $\sim$0.6 km s$^{-1}$, which is comparable to three times the isothermal sound speed. This infall velocity appears to be consistent with the evolution of a gravitationally infalling core.


1994 ◽  
Vol 140 ◽  
pp. 185-189
Author(s):  
Y. Murata ◽  
R. Kawabe ◽  
M. Ishiguro ◽  
K.-I. Morita ◽  
T. Hasegawa ◽  
...  

AbstractWe have made aperture synthesis multifield observations of Orion Molecular Cloud-1 (OMC-1) in the CS (J=1-0) line using the Nobeyama Millimeter Array (NMA), and obtained 9” resolution maps over 10’ length. The OMC-1 ridge shows a wiggled structure. The position angle of whole the ridge is ~ 0° - 10°, but ~ 20° - 30°around the clumps. It is possible to make this structure by the magnetic field with a position angle of ~ 150°. We also found filamentary structures in the northwest of Orion-KL, with a length-width ratio of more than 25, which are made by the gas flow from Orion-KL.


Sign in / Sign up

Export Citation Format

Share Document