scholarly journals Optimal Cosmic Microwave Background Lensing Reconstruction and Parameter Estimation with SPTpol Data

2021 ◽  
Vol 922 (2) ◽  
pp. 259
Author(s):  
M. Millea ◽  
C. M. Daley ◽  
T-L. Chou ◽  
E. Anderes ◽  
P. A. R. Ade ◽  
...  

Abstract We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the gravitational lensing of the cosmic microwave background (CMB), using 100 deg2 of polarization observations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 μK arcmin in polarization, which are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is significantly suboptimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is optimal at any noise level. We infer the amplitude of the gravitational lensing potential to be A ϕ = 0.949 ± 0.122 using the Bayesian pipeline, consistent with our QE pipeline result, but with 17% smaller error bars. The Bayesian analysis also provides a simple way to account for systematic uncertainties, performing a similar job as frequentist “bias hardening” or linear bias correction, and reducing the systematic uncertainty on A ϕ due to polarization calibration from almost half of the statistical error to effectively zero. Finally, we jointly constrain A ϕ along with A L, the amplitude of lensing-like effects on the CMB power spectra, demonstrating that the Bayesian method can be used to easily infer parameters both from an optimal lensing reconstruction and from the delensed CMB, while exactly accounting for the correlation between the two. These results demonstrate the feasibility of the Bayesian approach on real data, and pave the way for future analysis of deep CMB polarization measurements with SPT-3G, Simons Observatory, and CMB-S4, where improvements relative to the QE can reach 1.5 times tighter constraints on A ϕ and seven times lower effective lensing reconstruction noise.

2020 ◽  
Vol 638 ◽  
pp. L1 ◽  
Author(s):  
S. Joudaki ◽  
H. Hildebrandt ◽  
D. Traykova ◽  
N. E. Chisari ◽  
C. Heymans ◽  
...  

We present a combined tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KV450) and the Dark Energy Survey (DES-Y1). We homogenize the analysis of these two public cosmic shear datasets by adopting consistent priors and modeling of nonlinear scales, and determine new redshift distributions for DES-Y1 based on deep public spectroscopic surveys. Adopting these revised redshifts results in a 0.8σ reduction in the DES-inferred value for S​8, which decreases to a 0.5σ reduction when including a systematic redshift calibration error model from mock DES data based on the MICE2 simulation. The combined KV450+DES-Y1 constraint on S8 = 0.762−0.024+0.025 is in tension with the Planck 2018 constraint from the cosmic microwave background at the level of 2.5σ. This result highlights the importance of developing methods to provide accurate redshift calibration for current and future weak-lensing surveys.


2017 ◽  
Vol 597 ◽  
pp. A126 ◽  
Author(s):  
F. Couchot ◽  
S. Henrot-Versillé ◽  
O. Perdereau ◽  
S. Plaszczynski ◽  
B. Rouillé d’Orfeuil ◽  
...  

2017 ◽  
Vol 600 ◽  
pp. A60 ◽  
Author(s):  
Davide Poletti ◽  
Giulio Fabbian ◽  
Maude Le Jeune ◽  
Julien Peloton ◽  
Kam Arnold ◽  
...  

Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance, in the context of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this work we have explicitly constructed a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigated the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then discuss the potential implications of these observations on the choice of map-making and power spectrum estimation approaches in the context of B-mode polarization studies. Specifically, we have studied the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may haveon the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focused on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR. Our analysis and conclusions are however more generally applicable.


2012 ◽  
Vol 756 (1) ◽  
pp. 65 ◽  
Author(s):  
O. Zahn ◽  
C. L. Reichardt ◽  
L. Shaw ◽  
A. Lidz ◽  
K. A. Aird ◽  
...  

2008 ◽  
Vol 388 (4) ◽  
pp. 1618-1626 ◽  
Author(s):  
Carmelita Carbone ◽  
Volker Springel ◽  
Carlo Baccigalupi ◽  
Matthias Bartelmann ◽  
Sabino Matarrese

2019 ◽  
Vol 485 (3) ◽  
pp. 3919-3929 ◽  
Author(s):  
Benjamin Horowitz ◽  
Simone Ferraro ◽  
Blake D Sherwin

Abstract Cosmic microwave background (CMB) lensing is a powerful probe of the matter distribution in the Universe. The standard quadratic estimator, which is typically used to measure the lensing signal, is known to be suboptimal for low-noise polarization data from next-generation experiments. In this paper, we explain why the quadratic estimator will also be suboptimal for measuring lensing on very small scales, even for measurements in temperature where this estimator typically performs well. Though maximum likelihood methods could be implemented to improve performance, we explore a much simpler solution, revisiting a previously proposed method to measure lensing that involves a direct inversion of the background gradient. An important application of this simple formalism is the measurement of cluster masses with CMB lensing. We find that directly applying a gradient inversion matched filter to simulated lensed images of the CMB can tighten constraints on cluster masses compared to the quadratic estimator. While the difference is not relevant for existing surveys, for future surveys it can translate to significant improvements in mass calibration for distant clusters, where galaxy lensing calibration is ineffective due to the lack of enough resolved background galaxies. Improvements can be as large as ${\sim } 50{{\ \rm per\ cent}}$ for a cluster at z = 2 and a next-generation CMB experiment with 1 $\mu$K arcmin noise, and over an order of magnitude for lower noise levels. For future surveys, this simple matched filter or gradient inversion method approaches the performance of maximum likelihood methods, at a fraction of the computational cost.


Sign in / Sign up

Export Citation Format

Share Document