scholarly journals Magnetic Energy Release, Plasma Dynamics, and Particle Acceleration in Relativistic Turbulent Magnetic Reconnection

2021 ◽  
Vol 919 (2) ◽  
pp. 111
Author(s):  
Fan Guo ◽  
Xiaocan Li ◽  
William Daughton ◽  
Hui Li ◽  
Patrick Kilian ◽  
...  
2020 ◽  
Author(s):  
Liping Yang ◽  
Hui Li ◽  
Fan Guo ◽  
Xiancan Li ◽  
Shengtai Li ◽  
...  

<p>We report detailed numerical studies of magnetic reconnection in high-Lundquist-number, turbulent plasma by means of a three-dimensional (3D) resistive magnetohydrodynamics model. It is found that although turbulence is pre-existing, magnetic fields still restructure themselves to shape many X-points with evident mean inflow/outflow as well as the hierarchically generated magnetic flux ropes (plasmoids in 2D) with twist field lines. Moreover, the turbulence facilitates magnetic reconnections, and makes the normalized global reconnection rate reach ∼ 0.02 − 0.1, corresponding to turbulence level from very low to high and magnetic energy release from feeble to violent. The rate is nearly independent on the Lundquist number, and thus the fast turbulent reconnection occurs. A stochastic separation of the reconnected magnetic field lines with large opening angles follows a super-diffusion, indicating the broadening of outflow regions owing to the turbulence. These findings manifest that with the high Lundquist numbers (S ≥ 10^4), the 3D reconnection is turbulent and fast.</p>


2001 ◽  
Vol 550 (1) ◽  
pp. L105-L108 ◽  
Author(s):  
A. G. Kosovichev ◽  
V. V. Zharkova

2020 ◽  
Vol 235 ◽  
pp. 07003
Author(s):  
Yingchao Lu ◽  
Fan Guo ◽  
Patrick Kilian ◽  
Hui Li ◽  
Chengkun Huang ◽  
...  

A rotating pulsar creates a surrounding pulsar wind nebula (PWN) by steadily releasing an energetic wind into the interior of the expanding shockwave of supernova remnant or interstellar medium. At the termination shock of a PWN, the Poynting-flux- dominated relativistic striped wind is compressed. Magnetic reconnection is driven by the compression and converts magnetic energy into particle kinetic energy and accelerating particles to high energies. We carrying out particle-in-cell (PIC) simulations to study the shock structure as well as the energy conversion and particle acceleration mechanism. By analyzing particle trajectories, we find that many particles are accelerated by Fermi-type mechanism. The maximum energy for electrons and positrons can reach hundreds of TeV.


2020 ◽  
Author(s):  
Xiaocan Li ◽  
Fan Guo

<p>Magnetic reconnection is a primary driver of magnetic energy release and particle acceleration processes in space and astrophysical plasmas. Solar flares are a great example where observations have suggested that a large fraction of magnetic energy is converted into nonthermal particles and radiation. One of the major unsolved problems in reconnection studies is nonthermal particle acceleration. In the past decade or two, 2D kinetic simulations have been widely used and have identified several acceleration mechanisms in reconnection. Recent 3D simulations have shown that the reconnection layer naturally generates magnetic turbulence. Here we report our recent progresses in building a macroscopic model that includes these physics for explaining particle acceleration during solar flares. We show that, for sufficient large systems, high-energy particle acceleration processes can be well described as flow compression and shear. By means of 3D kinetic simulations, we found that the self-generated turbulence is essential for the formation of power-law electron energy spectrum in non-relativistic reconnection. Based on these results, we then proceed to solve an energetic particle transport equation in a compressible reconnection layer provided by high-Lundquist-number MHD simulations. Due to the compression effect, particles are accelerated to high energies and develop power-law energy distributions. The power-law index and maximum energy are both comparable to solar flare observations. This study clarifies the nature of particle acceleration in large-scale reconnection sites and initializes a framework for studying large-scale particle acceleration during solar flares.</p>


1999 ◽  
Vol 510 (2) ◽  
pp. 1045-1052 ◽  
Author(s):  
I. J. D. Craig ◽  
A. N. McClymont

Author(s):  
H Tong

Abstract The magnetic field of magnetars may be twisted compared with that of normal pulsars. Previous works mainly discussed magnetic energy release in the closed field line regions of magnetars. For a twisted magnetic field, the field lines will inflate in the radial direction. Similar to normal pulsars, the idea of light cylinder radius is introduced. More field lines will cross the light cylinder and become open for a twisted magnetic field. Therefore, magnetars may have a large polar cap, which may correspond to the hot spot during outburst. Particle flow in the open field line regions will result in the untwisting of the magnetic field. Magnetic energy release in the open field line regions can be calculated. The model calculations can catch the general trend of magnetar outburst: decreasing X-ray luminosity, shrinking hot spot etc. For magnetic energy release in the open field line regions, the geometry will be the same for different outburst in one magnetar.


Sign in / Sign up

Export Citation Format

Share Document