scholarly journals Dust Rings as a Footprint of Planet Formation in a Protoplanetary Disk

2021 ◽  
Vol 921 (2) ◽  
pp. 169
Author(s):  
Kazuhiro D. Kanagawa ◽  
Takayuki Muto ◽  
Hidekazu Tanaka

Abstract Relatively large dust grains (referred to as pebbles) accumulate at the outer edge of the gap induced by a planet in a protoplanetary disk, and a ring structure with a high dust-to-gas ratio can be formed. Such a ring has been thought to be located immediately outside the planetary orbit. We examined the evolution of the dust ring formed by a migrating planet, by performing two-fluid (gas and dust) hydrodynamic simulations. We found that the initial dust ring does not follow the migrating planet and remains at the initial location of the planet in cases with a low viscosity of α ∼ 10−4. The initial ring is gradually deformed by viscous diffusion, and a new ring is formed in the vicinity of the migrating planet, which develops from the trapping of the dust grains leaking from the initial ring. During this phase, two rings coexist outside the planetary orbit. This phase can continue over ∼1 Myr for a planet migrating from 100 au. After the initial ring disappears, only the later ring remains. This change in the ring morphology can provide clues as to when and where the planet was formed, and is the footprint of the planet. We also carried out simulations with a planet growing in mass. These simulations show more complex asymmetric structures in the dust rings. The observed asymmetric structures in the protoplanetary disks may be related to a migrating and growing planet.

2004 ◽  
Vol 202 ◽  
pp. 375-377
Author(s):  
Taku Takeuchi ◽  
Pawel Artymowicz

In optically thin gas disks around young Vega-type stars, dust grains are exposed to the stellar radiation pressure and gas drag force. The combination of these forces pushes the grains away from the central star. Typically, 10–100 μm grains migrate outward to become concentrated at the outer edge of the gas disk. A dust ring naturally forms without the help of clearing bodies, such as planets or brown dwarfs.


2011 ◽  
Vol 736 (2) ◽  
pp. 135 ◽  
Author(s):  
Nicholas Lee ◽  
Jonathan P. Williams ◽  
Lucas A. Cieza

1985 ◽  
Vol 85 ◽  
pp. 59-62
Author(s):  
T. Mukai

AbstractBased on a mechanism to form the solar dust ring, it is proved that the observed peak in infrared F-corona cannot be explained by silicate type grain alone. Preliminary analysis on the recent infrared data of F-corona by Maihara et al.(1984) has suggested that the ring particle has different physical properties compared with the dust grains, which produce the background F-corona.


2017 ◽  
Vol 844 (1) ◽  
pp. L5 ◽  
Author(s):  
Akimasa Kataoka ◽  
Takashi Tsukagoshi ◽  
Adriana Pohl ◽  
Takayuki Muto ◽  
Hiroshi Nagai ◽  
...  

2014 ◽  
Vol 66 (1) ◽  
pp. 132 ◽  
Author(s):  
Masaki S Yamaguchi ◽  
Shigeo S Kimura

2020 ◽  
Vol 633 ◽  
pp. A137 ◽  
Author(s):  
C. P. Dullemond ◽  
A. Isella ◽  
S. M. Andrews ◽  
I. Skobleva ◽  
N. Dzyurkevich

Knowledge of the midplane temperature of protoplanetary disks is one of the key ingredients in theories of dust growth and planet formation. However, direct measurement of this quantity is complicated, and often depends on the fitting of complex models to data. In this paper we demonstrate a method to directly measure the midplane gas temperature from an optically thick molecular line if the disk is moderately inclined. The only model assumption that enters is that the line is very optically thick, specifically in the midplane region where we wish to measure the temperature. Freeze-out of the molecule onto dust grains could thwart this. However, in regions that are expected to be warm enough to avoid freeze-out, this method should work. We apply the method to the CO 2–1 line channel maps of the disk around HD 163296. We find that the midplane temperature between 100 and 400 au drops only mildly from 25 K down to 18 K. While we see no direct evidence of the midplane being optically thin due to strong CO depletion by freeze-out, we cannot rule it out either. The fact that the inferred temperatures are close to the expected CO freeze-out temperature could be an indication of this. Incidently, for the disk around HD 163296 we also find dynamic evidence for a rather abrupt outer edge of the disk, suggestive of outside-in photoevaporation or truncation by an unseen companion.


2009 ◽  
Author(s):  
Eri Kawamura ◽  
Sei-ichiro Watanabe ◽  
Tomonori Usuda ◽  
Motohide Tamura ◽  
Miki Ishii

Icarus ◽  
2009 ◽  
Vol 201 (1) ◽  
pp. 395-405 ◽  
Author(s):  
Hiroshi Kobayashi ◽  
Sei-ichiro Watanabe ◽  
Hiroshi Kimura ◽  
Tetsuo Yamamoto

2012 ◽  
Vol 8 (S293) ◽  
pp. 281-284
Author(s):  
Pin-Gao Gu ◽  
He-Feng Hsieh

AbstractWe investigate the dust velocity and spatial distribution in an eccentric protoplanetary disk under the secular gravitational perturbation of an embedded planet of about 5 Jupiter masses. We first employ the FARGO code to obtain the two-dimensional density and velocity profiles of the gas disk with the embedded planet in the quasi-steady state. We then apply the secular perturbation theory and incorporate the gas drag to estimate the dust velocity on the secular timescale. The dust-to-gas ratio of the unperturbed disk is simply assumed to be 0.01. In our fiducial disk model with the planet at 5 AU, we find that for 0.01 cm– to 1 m–sized dust particles well coupled to the gas, the dust behaves similarly to the gas and exhibits non-axisymmetric dynamics as a result of eccentric orbits. However, for the case of a low-density gaseous disk (termed “transition disk” henceforth in this article) harboring the planet at 100 AU, the azimuthal distributions of dust of various sizes can deviate significantly.


2019 ◽  
Vol 627 ◽  
pp. A50 ◽  
Author(s):  
Sébastien Charnoz ◽  
Francesco C. Pignatale ◽  
Ryuki Hyodo ◽  
Brandon Mahan ◽  
Marc Chaussidon ◽  
...  

Context. When and where planetesimals form in a protoplanetary disk are highly debated questions. Streaming instability is considered the most promising mechanism, but the conditions for its onset are stringent. Disk studies show that the planet forming region is not turbulent because of the lack of ionization forming possibly dead zones (DZs). Aims. We investigate planetesimal formation in an evolving disk, including the DZ and thermal evolution. Methods. We used a 1D time-evolving stratified disk model with composite chemistry grains, gas and dust transport, and dust growth. Results. Accretion of planetesimals always develops in the DZ around the snow line, due to a combination of water recondensation and creation of dust traps caused by viscosity variations close to the DZ. The width of the planetesimal forming region depends on the disk metallicity. For Z = Z⊙, planetesimals form in a ring of about 1 au width, while for Z > 1.2 Z⊙ planetesimals form from the snow line up to the outer edge of the DZ ≃ 20 au. The efficiency of planetesimal formation in a disk with a DZ is due to the very low effective turbulence in the DZ and to the efficient piling up of material coming from farther away; this material accumulates in region of positive pressure gradients forming a dust trap due to viscosity variations. For Z = Z⊙ the disk is always dominated in terms of mass by pebbles, while for Z > 1.2 Z⊙ planetesimals are always more abundant than pebbles. If it is assumed that silicate dust is sticky and grows up to impact velocities ~10 m s−1, then planetesimals can form down to 0.1 au (close to the inner edge of the DZ). In conclusion the DZ seems to be a sweet spot for the formation of planetesimals: wide scale planetesimal formation is possible for Z > 1.2 Z⊙. If hot silicate dust is as sticky as ice, then it is also possible to form planetesimals well inside the snow line.


Sign in / Sign up

Export Citation Format

Share Document