De-noising SDO/HMI Solar Magnetograms by Image Translation Method Based on Deep Learning

2020 ◽  
Vol 891 (1) ◽  
pp. L4 ◽  
Author(s):  
Eunsu Park ◽  
Yong-Jae Moon ◽  
Daye Lim ◽  
Harim Lee
Author(s):  
Vu Tuan Hai ◽  
Dang Thanh Vu ◽  
Huynh Ho Thi Mong Trinh ◽  
Pham The Bao

Recent advances in deep learning models have shown promising potential in object removal, which is the task of replacing undesired objects with appropriate pixel values using known context. Object removal-based deep learning can commonly be solved by modeling it as the Img2Img (image to image) translation or Inpainting. Instead of dealing with a large context, this paper aims at a specific application of object removal, that is, erasing braces trace out of an image having teeth with braces (called braces2teeth problem). We solved the problem by three methods corresponding to different datasets. Firstly, we use the CycleGAN model to deal with the problem that paired training data is not available. In the second case, we try to create pseudo-paired data to train the Pix2Pix model. In the last case, we utilize GraphCut combining generative inpainting model to build a user-interactive tool that can improve the result in case the user is not satisfied with previous results. To our best knowledge, this study is one of the first attempts to take the braces2teeth problem into account by using deep learning techniques and it can be applied in various fields, from health care to entertainment.


2021 ◽  
Author(s):  
Federico Figari Tomenotti

Change detection is a well-known topic of remote sensing. The goal is to track and monitor the evolution of changes affecting the Earth surface over time. The recently increased availability in remote sensing data for Earth observation and in computational power has raised the interest in this field of research. In particular, the keywords “multitemporal” and “heterogeneous” play prominent roles. The former refers to the availability and the comparison of two or more satellite images of the same place on the ground, in order to find changes and track the evolution of the observed surface, maybe with different time sensitivities. The latter refers to the capability of performing change detection with images coming from different sources, corresponding to different sensors, wavelengths, polarizations, acquisition geometries, etc. This thesis addresses the challenging topic of multitemporal change detection with heterogeneous remote sensing images. It proposes a novel approach, taking inspiration from recent developments in the literature. The proposed method is based on deep learning - involving autoencoders of convolutional neural networks - and represents an exapmple of unsupervised change detection. A major novelty of the work consists in including a prior information model, used to make the method unsupervised, within a well-established algorithm such as the canonical correlation analysis, and in combining these with a deep learning framework to give rise to an image translation method able to compare heterogeneous images regardless of their highly different domains. The theoretical analysis is supported by experimental results, comparing the proposed methodology to the state of the art of this discipline. Two different datasets were used for the experiments, and the results obtained on both of them show the effectiveness of the proposed method.


2021 ◽  
pp. 26-34
Author(s):  
Yuqian Li ◽  
Weiguo Xu

AbstractArchitects usually design ideation and conception by hand-sketching. Sketching is a direct expression of the architect’s creativity. But 2D sketches are often vague, intentional and even ambiguous. In the research of sketch-based modeling, it is the most difficult part to make the computer to recognize the sketches. Because of the development of artificial intelligence, especially deep learning technology, Convolutional Neural Networks (CNNs) have shown obvious advantages in the field of extracting features and matching, and Generative Adversarial Neural Networks (GANs) have made great breakthroughs in the field of architectural generation which make the image-to-image translation become more and more popular. As the building images are gradually developed from the original sketches, in this research, we try to develop a system from the sketches to the images of buildings using CycleGAN algorithm. The experiment demonstrates that this method could achieve the mapping process from the sketches to images, and the results show that the sketches’ features could be recognised in the process. By the learning and training process of the sketches’ reconstruction, the features of the images are also mapped to the sketches, which strengthen the architectural relationship in the sketch, so that the original sketch can gradually approach the building images, and then it is possible to achieve the sketch-based modeling technology.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 60338-60343 ◽  
Author(s):  
Yu Li ◽  
Randi Fu ◽  
Xiangchao Meng ◽  
Wei Jin ◽  
Feng Shao

2020 ◽  
Vol 18 (8) ◽  
pp. 9-17
Author(s):  
Sung-Woon Jung ◽  
Hyuk-Ju Kwon ◽  
Young-Choon Kim ◽  
Sang-Ho Ahn ◽  
Sung-Hak Lee

2020 ◽  
Vol 12 (2) ◽  
pp. 275 ◽  
Author(s):  
Zhengxia Zou ◽  
Tianyang Shi ◽  
Wenyuan Li ◽  
Zhou Zhang ◽  
Zhenwei Shi

Despite the recent progress in deep learning and remote sensing image interpretation, the adaption of a deep learning model between different sources of remote sensing data still remains a challenge. This paper investigates an interesting question: do synthetic data generalize well for remote sensing image applications? To answer this question, we take the building segmentation as an example by training a deep learning model on the city map of a well-known video game “Grand Theft Auto V” and then adapting the model to real-world remote sensing images. We propose a generative adversarial training based segmentation framework to improve the adaptability of the segmentation model. Our model consists of a CycleGAN model and a ResNet based segmentation network, where the former one is a well-known image-to-image translation framework which learns a mapping of the image from the game domain to the remote sensing domain; and the latter one learns to predict pixel-wise building masks based on the transformed data. All models in our method can be trained in an end-to-end fashion. The segmentation model can be trained without using any additional ground truth reference of the real-world images. Experimental results on a public building segmentation dataset suggest the effectiveness of our adaptation method. Our method shows superiority over other state-of-the-art semantic segmentation methods, for example, Deeplab-v3 and UNet. Another advantage of our method is that by introducing semantic information to the image-to-image translation framework, the image style conversion can be further improved.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xu Yin ◽  
Yan Li ◽  
Byeong-Seok Shin

The image-to-image translation method aims to learn inter-domain mappings from paired/unpaired data. Although this technique has been widely used for visual predication tasks—such as classification and image segmentation—and achieved great results, we still failed to perform flexible translations when attempting to learn different mappings, especially for images containing multiple instances. To tackle this problem, we propose a generative framework DAGAN (Domain-aware Generative Adversarial etwork) that enables domains to learn diverse mapping relationships. We assumed that an image is composed with background and instance domain and then fed them into different translation networks. Lastly, we integrated the translated domains into a complete image with smoothed labels to maintain realism. We examined the instance-aware framework on datasets generated by YOLO and confirmed that this is capable of generating images of equal or better diversity compared to current translation models.


2020 ◽  
Vol 12 (1) ◽  
pp. 1-18
Author(s):  
Shuo Liu ◽  
Mingliang Gao ◽  
Vijay John ◽  
Zheng Liu ◽  
Erik Blasch

Sign in / Sign up

Export Citation Format

Share Document