RECONSTRUCTED TEETH IMAGE FROM BRACES WITH GAN

Author(s):  
Vu Tuan Hai ◽  
Dang Thanh Vu ◽  
Huynh Ho Thi Mong Trinh ◽  
Pham The Bao

Recent advances in deep learning models have shown promising potential in object removal, which is the task of replacing undesired objects with appropriate pixel values using known context. Object removal-based deep learning can commonly be solved by modeling it as the Img2Img (image to image) translation or Inpainting. Instead of dealing with a large context, this paper aims at a specific application of object removal, that is, erasing braces trace out of an image having teeth with braces (called braces2teeth problem). We solved the problem by three methods corresponding to different datasets. Firstly, we use the CycleGAN model to deal with the problem that paired training data is not available. In the second case, we try to create pseudo-paired data to train the Pix2Pix model. In the last case, we utilize GraphCut combining generative inpainting model to build a user-interactive tool that can improve the result in case the user is not satisfied with previous results. To our best knowledge, this study is one of the first attempts to take the braces2teeth problem into account by using deep learning techniques and it can be applied in various fields, from health care to entertainment.

2018 ◽  
Vol 27 (01) ◽  
pp. 098-109 ◽  
Author(s):  
Nagarajan Ganapathy ◽  
Ramakrishnan Swaminathan ◽  
Thomas Deserno

Objectives: Deep learning models such as convolutional neural networks (CNNs) have been applied successfully to medical imaging, but biomedical signal analysis has yet to fully benefit from this novel approach. Our survey aims at (i) reviewing deep learning techniques for biosignal analysis in computer- aided diagnosis; and (ii) deriving a taxonomy for organizing the growing number of applications in the field. Methods: A comprehensive literature research was performed using PubMed, Scopus, and ACM. Deep learning models were classified with respect to the (i) origin, (ii) dimension, and (iii) type of the biosignal as input to the deep learning model; (iv) the goal of the application; (v) the size and (vi) type of ground truth data; (vii) the type and (viii) schedule of learning the network; and (ix) the topology of the model. Results: Between January 2010 and December 2017, a total 71 papers were published on the topic. The majority (n = 36) of papers are on electrocariography (ECG) signals. Most applications (n = 25) aim at detection of patterns, while only a few (n = 6) at predection of events. Out of 36 ECG-based works, many (n = 17) relate to multi-lead ECG. Other biosignals that have been identified in the survey are electromyography, phonocardiography, photoplethysmography, electrooculography, continuous glucose monitoring, acoustic respiratory signal, blood pressure, and electrodermal activity signal, while ballistocardiography or seismocardiography have yet to be analyzed using deep learning techniques. In supervised and unsupervised applications, CNNs and restricted Boltzmann machines are the most and least frequently used, (n = 34) and (n = 15), respectively. Conclusion: Our key-code classification of relevant papers was used to cluster the approaches that have been published to date and demonstrated a large variability of research with respect to data, application, and network topology. Future research is expected to focus on the standardization of deep learning architectures and on the optimization of the network parameters to increase performance and robustness. Furthermore, application-driven approaches and updated training data from mobile recordings are needed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Mao ◽  
Jun Kang Chow ◽  
Pin Siang Tan ◽  
Kuan-fu Liu ◽  
Jimmy Wu ◽  
...  

AbstractAutomatic bird detection in ornithological analyses is limited by the accuracy of existing models, due to the lack of training data and the difficulties in extracting the fine-grained features required to distinguish bird species. Here we apply the domain randomization strategy to enhance the accuracy of the deep learning models in bird detection. Trained with virtual birds of sufficient variations in different environments, the model tends to focus on the fine-grained features of birds and achieves higher accuracies. Based on the 100 terabytes of 2-month continuous monitoring data of egrets, our results cover the findings using conventional manual observations, e.g., vertical stratification of egrets according to body size, and also open up opportunities of long-term bird surveys requiring intensive monitoring that is impractical using conventional methods, e.g., the weather influences on egrets, and the relationship of the migration schedules between the great egrets and little egrets.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2611
Author(s):  
Andrew Shepley ◽  
Greg Falzon ◽  
Christopher Lawson ◽  
Paul Meek ◽  
Paul Kwan

Image data is one of the primary sources of ecological data used in biodiversity conservation and management worldwide. However, classifying and interpreting large numbers of images is time and resource expensive, particularly in the context of camera trapping. Deep learning models have been used to achieve this task but are often not suited to specific applications due to their inability to generalise to new environments and inconsistent performance. Models need to be developed for specific species cohorts and environments, but the technical skills required to achieve this are a key barrier to the accessibility of this technology to ecologists. Thus, there is a strong need to democratize access to deep learning technologies by providing an easy-to-use software application allowing non-technical users to train custom object detectors. U-Infuse addresses this issue by providing ecologists with the ability to train customised models using publicly available images and/or their own images without specific technical expertise. Auto-annotation and annotation editing functionalities minimize the constraints of manually annotating and pre-processing large numbers of images. U-Infuse is a free and open-source software solution that supports both multiclass and single class training and object detection, allowing ecologists to access deep learning technologies usually only available to computer scientists, on their own device, customised for their application, without sharing intellectual property or sensitive data. It provides ecological practitioners with the ability to (i) easily achieve object detection within a user-friendly GUI, generating a species distribution report, and other useful statistics, (ii) custom train deep learning models using publicly available and custom training data, (iii) achieve supervised auto-annotation of images for further training, with the benefit of editing annotations to ensure quality datasets. Broad adoption of U-Infuse by ecological practitioners will improve ecological image analysis and processing by allowing significantly more image data to be processed with minimal expenditure of time and resources, particularly for camera trap images. Ease of training and use of transfer learning means domain-specific models can be trained rapidly, and frequently updated without the need for computer science expertise, or data sharing, protecting intellectual property and privacy.


2021 ◽  
Vol 22 (15) ◽  
pp. 7911
Author(s):  
Eugene Lin ◽  
Chieh-Hsin Lin ◽  
Hsien-Yuan Lane

A growing body of evidence currently proposes that deep learning approaches can serve as an essential cornerstone for the diagnosis and prediction of Alzheimer’s disease (AD). In light of the latest advancements in neuroimaging and genomics, numerous deep learning models are being exploited to distinguish AD from normal controls and/or to distinguish AD from mild cognitive impairment in recent research studies. In this review, we focus on the latest developments for AD prediction using deep learning techniques in cooperation with the principles of neuroimaging and genomics. First, we narrate various investigations that make use of deep learning algorithms to establish AD prediction using genomics or neuroimaging data. Particularly, we delineate relevant integrative neuroimaging genomics investigations that leverage deep learning methods to forecast AD on the basis of incorporating both neuroimaging and genomics data. Moreover, we outline the limitations as regards to the recent AD investigations of deep learning with neuroimaging and genomics. Finally, we depict a discussion of challenges and directions for future research. The main novelty of this work is that we summarize the major points of these investigations and scrutinize the similarities and differences among these investigations.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5039
Author(s):  
Tae-Hyun Kim ◽  
Hye-Rin Kim ◽  
Yeong-Jun Cho

In this study, we present a framework for product quality inspection based on deep learning techniques. First, we categorize several deep learning models that can be applied to product inspection systems. In addition, we explain the steps for building a deep-learning-based inspection system in detail. Second, we address connection schemes that efficiently link deep learning models to product inspection systems. Finally, we propose an effective method that can maintain and enhance a product inspection system according to improvement goals of the existing product inspection systems. The proposed system is observed to possess good system maintenance and stability owing to the proposed methods. All the proposed methods are integrated into a unified framework and we provide detailed explanations of each proposed method. In order to verify the effectiveness of the proposed system, we compare and analyze the performance of the methods in various test scenarios. We expect that our study will provide useful guidelines to readers who desire to implement deep-learning-based systems for product inspection.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 646
Author(s):  
Bini Darwin ◽  
Pamela Dharmaraj ◽  
Shajin Prince ◽  
Daniela Elena Popescu ◽  
Duraisamy Jude Hemanth

Precision agriculture is a crucial way to achieve greater yields by utilizing the natural deposits in a diverse environment. The yield of a crop may vary from year to year depending on the variations in climate, soil parameters and fertilizers used. Automation in the agricultural industry moderates the usage of resources and can increase the quality of food in the post-pandemic world. Agricultural robots have been developed for crop seeding, monitoring, weed control, pest management and harvesting. Physical counting of fruitlets, flowers or fruits at various phases of growth is labour intensive as well as an expensive procedure for crop yield estimation. Remote sensing technologies offer accuracy and reliability in crop yield prediction and estimation. The automation in image analysis with computer vision and deep learning models provides precise field and yield maps. In this review, it has been observed that the application of deep learning techniques has provided a better accuracy for smart farming. The crops taken for the study are fruits such as grapes, apples, citrus, tomatoes and vegetables such as sugarcane, corn, soybean, cucumber, maize, wheat. The research works which are carried out in this research paper are available as products for applications such as robot harvesting, weed detection and pest infestation. The methods which made use of conventional deep learning techniques have provided an average accuracy of 92.51%. This paper elucidates the diverse automation approaches for crop yield detection techniques with virtual analysis and classifier approaches. Technical hitches in the deep learning techniques have progressed with limitations and future investigations are also surveyed. This work highlights the machine vision and deep learning models which need to be explored for improving automated precision farming expressly during this pandemic.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


2018 ◽  
Author(s):  
Uri Shaham

AbstractBiological measurements often contain systematic errors, also known as “batch effects”, which may invalidate downstream analysis when not handled correctly. The problem of removing batch effects is of major importance in the biological community. Despite recent advances in this direction via deep learning techniques, most current methods may not fully preserve the true biological patterns the data contains. In this work we propose a deep learning approach for batch effect removal. The crux of our approach is learning a batch-free encoding of the data, representing its intrinsic biological properties, but not batch effects. In addition, we also encode the systematic factors through a decoding mechanism and require accurate reconstruction of the data. Altogether, this allows us to fully preserve the true biological patterns represented in the data. Experimental results are reported on data obtained from two high throughput technologies, mass cytometry and single-cell RNA-seq. Beyond good performance on training data, we also observe that our system performs well on test data obtained from new patients, which was not available at training time. Our method is easy to handle, a publicly available code can be found at https://github.com/ushaham/BatchEffectRemoval2018.


2021 ◽  
Author(s):  
Ramy Abdallah ◽  
Clare E. Bond ◽  
Robert W.H. Butler

&lt;p&gt;Machine learning is being presented as a new solution for a wide range of geoscience problems. Primarily machine learning has been used for 3D seismic data processing, seismic facies analysis and well log data correlation. The rapid development in technology with open-source artificial intelligence libraries and the accessibility of affordable computer graphics processing units (GPU) makes the application of machine learning in geosciences increasingly tractable. However, the application of artificial intelligence in structural interpretation workflows of subsurface datasets is still ambiguous. This study aims to use machine learning techniques to classify images of folds and fold-thrust structures. Here we show that convolutional neural networks (CNNs) as supervised deep learning techniques provide excellent algorithms to discriminate between geological image datasets. Four different datasets of images have been used to train and test the machine learning models. These four datasets are a seismic character dataset with five classes (faults, folds, salt, flat layers and basement), folds types with three classes (buckle, chevron and conjugate), fault types with three classes (normal, reverse and thrust) and fold-thrust geometries with three classes (fault bend fold, fault propagation fold and detachment fold). These image datasets are used to investigate three machine learning models. One Feedforward linear neural network model and two convolutional neural networks models (Convolution 2d layer transforms sequential model and Residual block model (ResNet with 9, 34, and 50 layers)). Validation and testing datasets forms a critical part of testing the model&amp;#8217;s performance accuracy. The ResNet model records the highest performance accuracy score, of the machine learning models tested. Our CNN image classification model analysis provides a framework for applying machine learning to increase structural interpretation efficiency, and shows that CNN classification models can be applied effectively to geoscience problems. The study provides a starting point to apply unsupervised machine learning approaches to sub-surface structural interpretation workflows.&lt;/p&gt;


2018 ◽  
Vol 7 (3.27) ◽  
pp. 258 ◽  
Author(s):  
Yecheng Yao ◽  
Jungho Yi ◽  
Shengjun Zhai ◽  
Yuwen Lin ◽  
Taekseung Kim ◽  
...  

The decentralization of cryptocurrencies has greatly reduced the level of central control over them, impacting international relations and trade. Further, wide fluctuations in cryptocurrency price indicate an urgent need for an accurate way to forecast this price. This paper proposes a novel method to predict cryptocurrency price by considering various factors such as market cap, volume, circulating supply, and maximum supply based on deep learning techniques such as the recurrent neural network (RNN) and the long short-term memory (LSTM),which are effective learning models for training data, with the LSTM being better at recognizing longer-term associations. The proposed approach is implemented in Python and validated for benchmark datasets. The results verify the applicability of the proposed approach for the accurate prediction of cryptocurrency price.


Sign in / Sign up

Export Citation Format

Share Document