scholarly journals Fermi-GBM Observations of GRB 210812A: Signatures of a Million Solar Mass Gravitational Lens

2021 ◽  
Vol 921 (2) ◽  
pp. L30
Author(s):  
P. Veres ◽  
N. Bhat ◽  
N. Fraija ◽  
S. Lesage
2020 ◽  
Vol 497 (2) ◽  
pp. 1583-1589
Author(s):  
Geraint F Lewis

ABSTRACT Due to differing gravitational potentials and path lengths, gravitational lensing induces time delays between multiple images of a source that, for solar mass objects, are of the order of ∼10−5 s. If an astrophysically compact source, such as a fast radio burst (FRB), is observed through a region with a high optical depth of such microlensing masses, this gravitational lensing time delay can be imprinted on short time-scale transient signals. In this paper, we consider the impact of the parity of the macroimage on the resultant microlensing time delays. It is found that this parity is directly imprinted on the microlensing signal, with macroimages formed at minima of the time arrival surface beginning with the most highly magnified microimages and then progressing to the fainter microimages. For macroimages at the maxima of the time arrival surface, this situation is reversed, with fainter images observed first and finishing with the brightest microimages. For macroimages at saddle points, the signal again begins with fainter images, followed by brighter images before again fading through the fainter microimages. The growing populations of cosmologically distant bursty transient sources will undoubtedly result in the discovery of strong lensed, multiply imaged FRBs, which will be susceptible to microlensing by compact masses. With the temporal resolution being offered by modern and future facilities, the detection of microlensing-induced time delays will reveal the parities of the gravitational lens macroimages, providing additional constraints on macrolensing mass models and improving the efficacy of these transient sources as cosmological probes.


1997 ◽  
Vol 161 ◽  
pp. 761-776 ◽  
Author(s):  
Claudio Maccone

AbstractSETI from space is currently envisaged in three ways: i) by large space antennas orbiting the Earth that could be used for both VLBI and SETI (VSOP and RadioAstron missions), ii) by a radiotelescope inside the Saha far side Moon crater and an Earth-link antenna on the Mare Smythii near side plain. Such SETIMOON mission would require no astronaut work since a Tether, deployed in Moon orbit until the two antennas landed softly, would also be the cable connecting them. Alternatively, a data relay satellite orbiting the Earth-Moon Lagrangian pointL2would avoid the Earthlink antenna, iii) by a large space antenna put at the foci of the Sun gravitational lens: 1) for electromagnetic waves, the minimal focal distance is 550 Astronomical Units (AU) or 14 times beyond Pluto. One could use the huge radio magnifications of sources aligned to the Sun and spacecraft; 2) for gravitational waves and neutrinos, the focus lies between 22.45 and 29.59 AU (Uranus and Neptune orbits), with a flight time of less than 30 years. Two new space missions, of SETI interest if ET’s use neutrinos for communications, are proposed.


2006 ◽  
Vol 20 ◽  
pp. 289-290
Author(s):  
I. Momcheva ◽  
K. Williams ◽  
C. Keeton ◽  
A. Zabludoff

1982 ◽  
Vol 138 (9) ◽  
pp. 147 ◽  
Author(s):  
G.S. Egorov ◽  
Nikolai S. Stepanov

2004 ◽  
Author(s):  
Bernard V. Jackson ◽  
Andrew Buffington ◽  
P. P. Hick

2019 ◽  
Vol 15 (S356) ◽  
pp. 403-404
Author(s):  
Negessa Tilahun Shukure ◽  
Solomon Belay Tessema ◽  
Endalkachew Mengistu

AbstractSeveral models of the solar luminosity, , in the evolutionary timescale, have been computed as a function of time. However, the solar mass-loss, , is one of the drivers of variation in this timescale. The purpose of this study is to model mass-loss varying solar luminosity, , and to predict the luminosity variation before it leaves the main sequence. We numerically computed the up to 4.9 Gyrs from now. We used the solution to compute the modeled . We then validated our model with the current solar standard model (SSM). The shows consistency up to 8 Gyrs. At about 8.85 Gyrs, the Sun loses 28% of its mass and its luminosity increased to 2.2. The model suggests that the total main sequence lifetime is nearly 9 Gyrs. The model explains well the stage at which the Sun exhausts its central supply of hydrogen and when it will be ready to leave the main sequence. It may also explain the fate of the Sun by making some improvements in comparison to previous models.


2021 ◽  
Vol 504 (1) ◽  
pp. 280-299
Author(s):  
Marija R Jankovic ◽  
James E Owen ◽  
Subhanjoy Mohanty ◽  
Jonathan C Tan

ABSTRACT Short-period super-Earth-sized planets are common. Explaining how they form near their present orbits requires understanding the structure of the inner regions of protoplanetary discs. Previous studies have argued that the hot inner protoplanetary disc is unstable to the magnetorotational instability (MRI) due to thermal ionization of potassium, and that a local gas pressure maximum forms at the outer edge of this MRI-active zone. Here we present a steady-state model for inner discs accreting viscously, primarily due to the MRI. The structure and MRI-viscosity of the inner disc are fully coupled in our model; moreover, we account for many processes omitted in previous such models, including disc heating by both accretion and stellar irradiation, vertical energy transport, realistic dust opacities, dust effects on disc ionization, and non-thermal sources of ionization. For a disc around a solar-mass star with a standard gas accretion rate ($\dot{M}\, \sim \, 10^{-8}$ M⊙ yr−1) and small dust grains, we find that the inner disc is optically thick, and the accretion heat is primarily released near the mid-plane. As a result, both the disc mid-plane temperature and the location of the pressure maximum are only marginally affected by stellar irradiation, and the inner disc is also convectively unstable. As previously suggested, the inner disc is primarily ionized through thermionic and potassium ion emission from dust grains, which, at high temperatures, counteract adsorption of free charges on to grains. Our results show that the location of the pressure maximum is determined by the threshold temperature above which thermionic and ion emission become efficient.


2020 ◽  
Vol 499 (4) ◽  
pp. 5641-5652
Author(s):  
Georgios Vernardos ◽  
Grigorios Tsagkatakis ◽  
Yannis Pantazis

ABSTRACT Gravitational lensing is a powerful tool for constraining substructure in the mass distribution of galaxies, be it from the presence of dark matter sub-haloes or due to physical mechanisms affecting the baryons throughout galaxy evolution. Such substructure is hard to model and is either ignored by traditional, smooth modelling, approaches, or treated as well-localized massive perturbers. In this work, we propose a deep learning approach to quantify the statistical properties of such perturbations directly from images, where only the extended lensed source features within a mask are considered, without the need of any lens modelling. Our training data consist of mock lensed images assuming perturbing Gaussian Random Fields permeating the smooth overall lens potential, and, for the first time, using images of real galaxies as the lensed source. We employ a novel deep neural network that can handle arbitrary uncertainty intervals associated with the training data set labels as input, provides probability distributions as output, and adopts a composite loss function. The method succeeds not only in accurately estimating the actual parameter values, but also reduces the predicted confidence intervals by 10 per cent in an unsupervised manner, i.e. without having access to the actual ground truth values. Our results are invariant to the inherent degeneracy between mass perturbations in the lens and complex brightness profiles for the source. Hence, we can quantitatively and robustly quantify the smoothness of the mass density of thousands of lenses, including confidence intervals, and provide a consistent ranking for follow-up science.


Sign in / Sign up

Export Citation Format

Share Document