scholarly journals MRI-active inner regions of protoplanetary discs. I. A detailed model of disc structure

2021 ◽  
Vol 504 (1) ◽  
pp. 280-299
Author(s):  
Marija R Jankovic ◽  
James E Owen ◽  
Subhanjoy Mohanty ◽  
Jonathan C Tan

ABSTRACT Short-period super-Earth-sized planets are common. Explaining how they form near their present orbits requires understanding the structure of the inner regions of protoplanetary discs. Previous studies have argued that the hot inner protoplanetary disc is unstable to the magnetorotational instability (MRI) due to thermal ionization of potassium, and that a local gas pressure maximum forms at the outer edge of this MRI-active zone. Here we present a steady-state model for inner discs accreting viscously, primarily due to the MRI. The structure and MRI-viscosity of the inner disc are fully coupled in our model; moreover, we account for many processes omitted in previous such models, including disc heating by both accretion and stellar irradiation, vertical energy transport, realistic dust opacities, dust effects on disc ionization, and non-thermal sources of ionization. For a disc around a solar-mass star with a standard gas accretion rate ($\dot{M}\, \sim \, 10^{-8}$ M⊙ yr−1) and small dust grains, we find that the inner disc is optically thick, and the accretion heat is primarily released near the mid-plane. As a result, both the disc mid-plane temperature and the location of the pressure maximum are only marginally affected by stellar irradiation, and the inner disc is also convectively unstable. As previously suggested, the inner disc is primarily ionized through thermionic and potassium ion emission from dust grains, which, at high temperatures, counteract adsorption of free charges on to grains. Our results show that the location of the pressure maximum is determined by the threshold temperature above which thermionic and ion emission become efficient.

2008 ◽  
Vol 4 (S252) ◽  
pp. 421-422
Author(s):  
S. Y. Jiang

AbstractKZ Hya is a short-period high amplitude metal pool population II pulsating variable. Its spectral type is B9-A7 III/IV. Its average effective temperature is 7640K. But its mass is only 0.97 solar mass. From normal stellar evolution and H-R diagram, we can not get such a solar mass star at post main sequence stage with so high effective temperature and so early type spectra. We observe this star since 1984 till now, 23years past. Finally we prove it is inside a binary with at least 2 unseen companions. The most massive companion has mass larger than 0.76 solar mass, mostly may be 0.99 to 3.99 solar mass. That means this companion must be a massive white dwarf. The distance between tow companions is about 10 AU. If the companion is white dwarf, this binary are fairly inside the nebula. This system is very old, older than 7.59 billion years. The nebula should be already diluted to very low density so that we can see the nebula directly. As its spectra type is B9III/VI at some time of maximum light and the visual absolute magnitude is 2.78, about 2 magnitudes higher than our sun. We can image that at the end of AGB stage of the companion, the strong fast winds from hot central core push away the outer atmosphere of KZ Hya. Later KZ Hya absorbed a part of Helium rich material from the companion. This will cause hydrogen content X decrease from 0.75 to about 0.62. Then KZ Hya looks like a hot post main sequence star


2021 ◽  
Author(s):  
Marija Jankovic ◽  
Subhanjoy Mohanty ◽  
James Owen ◽  
Jonathan Tan

<p>Short-period super-Earths and mini-Neptunes have been shown to be common, yet it is still not understood how and where inside protoplanetary discs they could have formed. To form these planets at the short periods at which they are detected, the inner regions of protoplanetary discs must be enriched in dust. Dust could accumulate in the inner disc if the innermost regions accrete via the magneto-rotational instability (MRI). We developed a model of the inner disc which includes MRI-driven accretion, disc heating by both accretion and stellar irradiation, vertical energy transport, dust opacities, dust effects on disc ionization, thermal and non-thermal sources of ionization. The inner disc is assumed to be in steady state, and the dust is assumed to be well-mixed with the gas. Using this model, we explore how various disc and stellar parameters affect the structure of the inner disc and the possibility of dust accumulation. We show that properties of dust strongly affect the size of the MRI-accreting region and whether this region exists at all. Increasing the dust-to-gas ratio increases the size of this region, suggesting that dust may accumulate in the inner disc without suppressing the MRI. Overall, conditions in the inner disc may be more favourable to planet formation earlier in the disc lifetime, while the disc accretion rate is higher.</p>


2019 ◽  
Vol 624 ◽  
pp. A114 ◽  
Author(s):  
Beibei Liu ◽  
Chris W. Ormel ◽  
Anders Johansen

Context. Streaming instability is a key mechanism in planet formation, clustering pebbles into planetesimals with the help of self-gravity. It is triggered at a particular disk location where the local volume density of solids exceeds that of the gas. After their formation, planetesimals can grow into protoplanets by feeding from other planetesimals in the birth ring as well as by accreting inwardly drifting pebbles from the outer disk. Aims. We aim to investigate the growth of planetesimals into protoplanets at a single location through streaming instability. For a solar-mass star, we test the conditions under which super-Earths are able to form within the lifetime of the gaseous disk. Methods. We modified the Mercury N-body code to trace the growth and dynamical evolution of a swarm of planetesimals at a distance of 2.7 AU from the star. The code simulates gravitational interactions and collisions among planetesimals, gas drag, type I torque, and pebble accretion. Three distributions of planetesimal sizes were investigated: (i) a mono-dispersed population of 400 km radius planetesimals, (ii) a poly-dispersed population of planetesimals from 200 km up to 1000 km, (iii) a bimodal distribution with a single runaway body and a swarm of smaller, 100 km size planetesimals. Results. The mono-dispersed population of 400 km size planetesimals cannot form protoplanets of a mass greater than that of the Earth. Their eccentricities and inclinations are quickly excited, which suppresses both planetesimal accretion and pebble accretion. Planets can form from the poly-dispersed and bimodal distributions. In these circumstances, it is the two-component nature that damps the random velocity of the large embryo through the dynamical friction of small planetesimals, allowing the embryo to accrete pebbles efficiently when it approaches 10−2 M⊕. Accounting for migration, close-in super-Earth planets form. Super-Earth planets are likely to form when the pebble mass flux is higher, the disk turbulence is lower, or the Stokes number of the pebbles is higher. Conclusions. For the single site planetesimal formation scenario, a two-component mass distribution with a large embryo and small planetesimals promotes planet growth, first by planetesimal accretion and then by pebble accretion of the most massive protoplanet. Planetesimal formation at single locations such as ice lines naturally leads to super-Earth planets by the combined mechanisms of planetesimal accretion and pebble accretion.


1980 ◽  
Vol 88 ◽  
pp. 389-396
Author(s):  
Steven N. Shore ◽  
Douglas S. Hall

We employ a simplified dynamo model to describe the long term photometric spectroscopic behavior of the RS CVn stars. The essential feature of the model is that the stars are in nearly synchronous rotation, with the differential rotation slower and the rotational velocity higher than for a single evolved 1 to 2 solar mass star. The spot groups are formed by eruption of enhanced toroidal fields, which have areas at the photosphere of several tenths of the surface area; the sizes of these regions are shear limited. Estimates of the lifetimes of active regions and of flare energetics are presented. The RS CVn phenomenon is then related to both the evolutionary status and the orbital parameters of the binary system.


2019 ◽  
Vol 624 ◽  
pp. A20 ◽  
Author(s):  
Gabriel-Dominique Marleau ◽  
Gavin A. L. Coleman ◽  
Adrien Leleu ◽  
Christoph Mordasini

Context. A low-mass companion to the two-solar mass star HIP 65426 has recently been detected by SPHERE at around 100 au from its host. Explaining the presence of super-Jovian planets at large separations, as revealed by direct imaging, is currently an open question. Aims. We want to derive statistical constraints on the mass and initial entropy of HIP 65426 b and to explore possible formation pathways of directly imaged objects within the core-accretion paradigm, focusing on HIP 65426 b. Methods. Constraints on the planet’s mass and post-formation entropy are derived from its age and luminosity combined with cooling models. For the first time, the results of population synthesis are also used to inform the results. Then a formation model that includes N-body dynamics with several embryos per disc is used to study possible formation histories and the properties of possible additional companions. Finally, the outcomes of two- and three-planet scattering in the post-disc phase are analysed, taking tides into account for small-pericentre orbits. Results. The mass of HIP 65426 b is found to be mp = 9.9−1.8+1.1 MJ using the hot population and mp = 10.9−2.0+1.4 MJ with the cold-nominal population. We find that core formation at small separations from the star followed by outward scattering and runaway accretion at a few hundred astronomical units succeeds in reproducing the mass and separation of HIP 65426 b. Alternatively, systems having two or more giant planets close enough to be on an unstable orbit at disc dispersal are likely to end up with one planet on a wide HIP 65426 b-like orbit with a relatively high eccentricity (≳ 0.5). Conclusions. If this scattering scenario explains its formation, HIP 65426 b is predicted to have a high eccentricity and to be accompanied by one or several roughly Jovian-mass planets at smaller semi-major axes, which also could have a high eccentricity. This could be tested by further direct-imaging as well as radial-velocity observations.


2012 ◽  
Vol 25 (2) ◽  
pp. 734-752 ◽  
Author(s):  
Michael Mayer ◽  
Leopold Haimberger

Abstract The vertically integrated global energy budget is evaluated with a direct and an indirect method (both corrected for mass inconsistencies of the forecast model), mainly using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis Interim (ERA-Interim) data. A new estimate for the net poleward total energy transport is given. Comparison to satellite-derived radiation data proves that ERA-Interim is better suited for investigation of interannual variations of the global energy budget than available satellite data since these either cover a relatively short period of time or are too inhomogeneous in time. While much improved compared to the 40-yr ECMWF Re-Analysis (ERA-40), regionally averaged energy budgets of ERA-Interim show that strong anomalies of forecasted vertical fluxes tend to be partly compensated by unrealistically large forecasted energy storage rates. Discrepancies between observed and forecasted monthly mean tendencies can be taken as rough measure for the uncertainties involved in the ERA-Interim energy budget. El Niño–Southern Oscillation (ENSO) is shown to have large impact on regional energy budgets, but strong compensation occurs between the western and eastern Pacific, leading to only small net variations of the total poleward energy transports (similar magnitude as the uncertainty of the computations). However, Hovmöller longitude–time plots of tropical energy exports show relatively strong slowly eastward-moving poleward transport anomalies in connection with ENSO. Verification of these findings using independent estimates still needs to be done.


2021 ◽  
Author(s):  
Xi Chen ◽  
Zhiyuan Ren ◽  
Da-Lei Li ◽  
Tie Liu ◽  
Ke Wang ◽  
...  

Abstract Theoretical models and numerical simulations suggest that high mass star (with mass > 8 solar mass) can be formed either via monolithic collapse of a massive core or competitive accretion, but the dominant mechanism is currently unclear. Although recent high resolution observations with the Atacama Large Millimeter/submillimeter Array (ALMA) have detected physical and kinematic features, such as disks, outflows and filamentary structures surrounding the high mass young stellar objects (HMYSO), direct detection of the infalling gas towards the HMYSO is still the key to distinguish the different scenarios. Chemically fresh gas inflows have been detected towards low-mass stars being formed, which are consistent with the accretion-disk-outflow process. In this work we report the detection of a chemically fresh inflow which is feeding HMYSO growth in the nearby high mass star-forming region G352.63-1.07. High quality images of the dust and molecular lines from both ALMA and the Submillimeter Array (SMA) have consistently revealed a gravitationally-controlled gas inflow towards a rotating structure (disk or torus) around the HMYSO. The HMYSO is also observed to have an outflow, but it can be clearly separated from the inflow. These kinematic features provide observational evidence to support the conjecture that high-mass stars can be formed in a similar process to that observed in the low-mass counterparts. The chemically fresh infalling streamers could also be related with the disk configuration, fragmentation and accretion bursts that occur in both simulations and observations.


Sign in / Sign up

Export Citation Format

Share Document