scholarly journals Gravitational microlensing time delays at high optical depth: image parities and the temporal properties of fast radio bursts

2020 ◽  
Vol 497 (2) ◽  
pp. 1583-1589
Author(s):  
Geraint F Lewis

ABSTRACT Due to differing gravitational potentials and path lengths, gravitational lensing induces time delays between multiple images of a source that, for solar mass objects, are of the order of ∼10−5 s. If an astrophysically compact source, such as a fast radio burst (FRB), is observed through a region with a high optical depth of such microlensing masses, this gravitational lensing time delay can be imprinted on short time-scale transient signals. In this paper, we consider the impact of the parity of the macroimage on the resultant microlensing time delays. It is found that this parity is directly imprinted on the microlensing signal, with macroimages formed at minima of the time arrival surface beginning with the most highly magnified microimages and then progressing to the fainter microimages. For macroimages at the maxima of the time arrival surface, this situation is reversed, with fainter images observed first and finishing with the brightest microimages. For macroimages at saddle points, the signal again begins with fainter images, followed by brighter images before again fading through the fainter microimages. The growing populations of cosmologically distant bursty transient sources will undoubtedly result in the discovery of strong lensed, multiply imaged FRBs, which will be susceptible to microlensing by compact masses. With the temporal resolution being offered by modern and future facilities, the detection of microlensing-induced time delays will reveal the parities of the gravitational lens macroimages, providing additional constraints on macrolensing mass models and improving the efficacy of these transient sources as cosmological probes.

2019 ◽  
Vol 627 ◽  
pp. A130 ◽  
Author(s):  
J. M. Diego ◽  
O. A. Hannuksela ◽  
P. L. Kelly ◽  
G. Pagano ◽  
T. Broadhurst ◽  
...  

Microlenses with typical stellar masses (a few M⊙) have traditionally been disregarded as potential sources of gravitational lensing effects at LIGO/Virgo frequencies, since the time delays are often much smaller than the inverse of the frequencies probed by LIGO/Virgo, resulting in negligible interference effects at LIGO/Virgo frequencies. While this is true for isolated microlenses in this mass regime, we show how, under certain circumstances and for realistic scenarios, a population of microlenses (for instance stars and remnants from a galaxy halo or from the intracluster medium) embedded in a macromodel potential (galaxy or cluster) can conspire together to produce time delays of order one millisecond, which would produce significant interference distortions in the observed strains. At sufficiently large magnification factors (of several hundred), microlensing effects should be common in gravitationally lensed gravitational waves. We explored the regime where the predicted signal falls in the frequency range probed by LIGO/Virgo. We find that stellar mass microlenses, permeating the lens plane, and near critical curves, can introduce interference distortions in strongly lensed gravitational waves. Lensed events with negative parity, or saddle points (which have never before been studied in the context of gravitational waves), and that take place near caustics of macromodels, are more likely to produce measurable interference effects at LIGO/Virgo frequencies. This is the first study that explores the effect of a realistic population of microlenses, including a macromodel, on strongly lensed gravitational waves.


2020 ◽  
Vol 496 (2) ◽  
pp. 1718-1729 ◽  
Author(s):  
Wolfgang Enzi ◽  
Simona Vegetti ◽  
Giulia Despali ◽  
Jen-Wei Hsueh ◽  
R Benton Metcalf

ABSTRACT We present the analysis of a sample of 24 SLACS-like galaxy–galaxy strong gravitational lens systems with a background source and deflectors from the Illustris-1 simulation. We study the degeneracy between the complex mass distribution of the lenses, substructures, the surface brightness distribution of the sources, and the time delays. Using a novel inference framework based on Approximate Bayesian Computation, we find that for all the considered lens systems, an elliptical and cored power-law mass density distribution provides a good fit to the data. However, the presence of cores in the simulated lenses affects most reconstructions in the form of a Source Position Transformation. The latter leads to a systematic underestimation of the source sizes by 50 per cent on average, and a fractional error in H0 of around $25_{-19}^{+37}$ per cent. The analysis of a control sample of 24 lens systems, for which we have perfect knowledge about the shape of the lensing potential, leads to a fractional error on H0 of $12_{-3}^{+6}$ per cent. We find no degeneracy between complexity in the lensing potential and the inferred amount of substructures. We recover an average total projected mass fraction in substructures of fsub < 1.7–2.0 × 10−3 at the 68 per cent confidence level in agreement with zero and the fact that all substructures had been removed from the simulation. Our work highlights the need for higher resolution simulations to quantify the lensing effect of more realistic galactic potentials better, and that additional observational constraint may be required to break existing degeneracies.


2008 ◽  
Vol 17 (07) ◽  
pp. 1055-1070 ◽  
Author(s):  
ALEXANDER F. ZAKHAROV

It is well-known that gravitational lensing is a powerful tool in the investigation of the distribution of matter, including that of dark matter (DM). Typical angular distances between images and typical time scales depend on the gravitational lens masses. For the case of microlensing, angular distances between images or typical astrometric shifts are about 10-5 - 10-6 arcsec. Such an angular resolution will be reached with the space–ground VLBI interferometer, Radioastron. The basic targets for microlensing searches should be bright point-like radio sources at cosmological distances. In this case, an analysis of their variability and a solid determination of microlensing could lead to an estimation of their cosmological mass density. Moreover, one could not exclude the possibility that non-baryonic dark matter could also form microlenses if the corresponding optical depth were high enough. It is known that in gravitationally lensed systems the probability (the optical depth) of observing microlensing is relatively high. Therefore, for example, gravitationally lensed objects, like the CLASS gravitational lens B1600+434, appear to be most suitable to detect astrometric microlensing, since features of photometric microlensing have been detected in these objects. However, to directly resolve these images and to directly detect the apparent motion of the knots, the Radioastron sensitivity would have to be improved, since the estimated flux density is below the sensitivity threshold. Alternatively, they may be observed by increasing an integration time, assuming that a radio source has a typical core–jet structure and microlensing phenomena are caused by the superluminal apparent motions of knots. In the case of a confirmation (or a negation) of claims about microlensing in gravitational lens systems, one can speculate about the microlens contribution to the gravitational lens mass. Astrometric microlensing due Galactic MACHOs is not very important because of low optical depths and long typical time scales. Therefore, the launch of the space interferometer Radioastron will enable the investigation of microlensing in the radio band, giving rise to the possibility of not only resolving microimages but also of observing astrometric microlensing.


2019 ◽  
Vol 624 ◽  
pp. A54 ◽  
Author(s):  
Peter Schneider

We consider several aspects of the generalized multi-plane gravitational lens theory, in which light rays from a distant source are affected by several main deflectors, and in addition by the tidal gravitational field of the large-scale matter distribution in the Universe when propagating between the main deflectors. Specifically, we derive a simple expression for the time-delay function in this case, making use of the general formalism for treating light propagation in inhomogeneous spacetimes which leads to the characterization of distance matrices between main lens planes. Applying Fermat’s principle, an alternative form of the corresponding lens equation is derived, which connects the impact vectors in three consecutive main lens planes, and we show that this form of the lens equation is equivalent to the more standard one. For this, some general relations for cosmological distance matrices are derived. The generalized multi-plane lens situation admits a generalized mass-sheet transformation, which corresponds to uniform isotropic scaling in each lens plane, a corresponding scaling of the deflection angle, and the addition of a tidal matrix (mass sheet plus external shear) to each main lens. The scaling factor in the lens planes exhibits a curious alternating behavior for odd and even numbered planes. We show that the time delay for sources in all lens planes scale with the same factor under this generalized mass-sheet transformation, thus precluding the use of time-delay ratios to break the mass-sheet transformation.


2020 ◽  
Vol 16 (1) ◽  
pp. 1-14
Author(s):  
Monim Jiboori ◽  
Nadia Abed ◽  
Mohamed Abdel Wahab

2018 ◽  
Vol 613 ◽  
pp. A15 ◽  
Author(s):  
Patrick Simon ◽  
Stefan Hilbert

Galaxies are biased tracers of the matter density on cosmological scales. For future tests of galaxy models, we refine and assess a method to measure galaxy biasing as a function of physical scalekwith weak gravitational lensing. This method enables us to reconstruct the galaxy bias factorb(k) as well as the galaxy-matter correlationr(k) on spatial scales between 0.01hMpc−1≲k≲ 10hMpc−1for redshift-binned lens galaxies below redshiftz≲ 0.6. In the refinement, we account for an intrinsic alignment of source ellipticities, and we correct for the magnification bias of the lens galaxies, relevant for the galaxy-galaxy lensing signal, to improve the accuracy of the reconstructedr(k). For simulated data, the reconstructions achieve an accuracy of 3–7% (68% confidence level) over the abovek-range for a survey area and a typical depth of contemporary ground-based surveys. Realistically the accuracy is, however, probably reduced to about 10–15%, mainly by systematic uncertainties in the assumed intrinsic source alignment, the fiducial cosmology, and the redshift distributions of lens and source galaxies (in that order). Furthermore, our reconstruction technique employs physical templates forb(k) andr(k) that elucidate the impact of central galaxies and the halo-occupation statistics of satellite galaxies on the scale-dependence of galaxy bias, which we discuss in the paper. In a first demonstration, we apply this method to previous measurements in the Garching-Bonn Deep Survey and give a physical interpretation of the lens population.


2020 ◽  
Vol 499 (4) ◽  
pp. 5641-5652
Author(s):  
Georgios Vernardos ◽  
Grigorios Tsagkatakis ◽  
Yannis Pantazis

ABSTRACT Gravitational lensing is a powerful tool for constraining substructure in the mass distribution of galaxies, be it from the presence of dark matter sub-haloes or due to physical mechanisms affecting the baryons throughout galaxy evolution. Such substructure is hard to model and is either ignored by traditional, smooth modelling, approaches, or treated as well-localized massive perturbers. In this work, we propose a deep learning approach to quantify the statistical properties of such perturbations directly from images, where only the extended lensed source features within a mask are considered, without the need of any lens modelling. Our training data consist of mock lensed images assuming perturbing Gaussian Random Fields permeating the smooth overall lens potential, and, for the first time, using images of real galaxies as the lensed source. We employ a novel deep neural network that can handle arbitrary uncertainty intervals associated with the training data set labels as input, provides probability distributions as output, and adopts a composite loss function. The method succeeds not only in accurately estimating the actual parameter values, but also reduces the predicted confidence intervals by 10 per cent in an unsupervised manner, i.e. without having access to the actual ground truth values. Our results are invariant to the inherent degeneracy between mass perturbations in the lens and complex brightness profiles for the source. Hence, we can quantitatively and robustly quantify the smoothness of the mass density of thousands of lenses, including confidence intervals, and provide a consistent ranking for follow-up science.


Author(s):  
Qijiao Xie ◽  
Qi Sun

Aerosols significantly affect environmental conditions, air quality, and public health locally, regionally, and globally. Examining the impact of land use/land cover (LULC) on aerosol optical depth (AOD) helps to understand how human activities influence air quality and develop suitable solutions. The Landsat 8 image and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products in summer in 2018 were used in LULC classification and AOD retrieval in this study. Spatial statistics and correlation analysis about the relationship between LULC and AOD were performed to examine the impact of LULC on AOD in summer in Wuhan, China. Results indicate that the AOD distribution expressed an obvious “basin effect” in urban development areas: higher AOD values concentrated in water bodies with lower terrain, which were surrounded by the high buildings or mountains with lower AOD values. The AOD values were negatively correlated with the vegetated areas while positively correlated to water bodies and construction lands. The impact of LULC on AOD varied with different contexts in all cases, showing a “context effect”. The regression correlations among the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normalized difference water index (NDWI), and AOD in given landscape contexts were much stronger than those throughout the whole study area. These findings provide sound evidence for urban planning, land use management and air quality improvement.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jose E. Perez ◽  
Florian Fage ◽  
David Pereira ◽  
Ali Abou-Hassan ◽  
Sophie Asnacios ◽  
...  

Abstract Background The interactions between nanoparticles and the biological environment have long been studied, with toxicological assays being the most common experimental route. In parallel, recent growing evidence has brought into light the important role that cell mechanics play in numerous cell biological processes. However, despite the prevalence of nanotechnology applications in biology, and in particular the increased use of magnetic nanoparticles for cell therapy and imaging, the impact of nanoparticles on the cells’ mechanical properties remains poorly understood. Results Here, we used a parallel plate rheometer to measure the impact of magnetic nanoparticles on the viscoelastic modulus G*(f) of individual cells. We show how the active uptake of nanoparticles translates into cell stiffening in a short time scale (< 30 min), at the single cell level. The cell stiffening effect is however less marked at the cell population level, when the cells are pre-labeled under a longer incubation time (2 h) with nanoparticles. 24 h later, the stiffening effect is no more present. Imaging of the nanoparticle uptake reveals almost immediate (within minutes) nanoparticle aggregation at the cell membrane, triggering early endocytosis, whereas nanoparticles are almost all confined in late or lysosomal endosomes after 2 h of uptake. Remarkably, this correlates well with the imaging of the actin cytoskeleton, with actin bundling being highly prevalent at early time points into the exposure to the nanoparticles, an effect that renormalizes after longer periods. Conclusions Overall, this work evidences that magnetic nanoparticle internalization, coupled to cytoskeleton remodeling, contributes to a change in the cell mechanical properties within minutes of their initial contact, leading to an increase in cell rigidity. This effect appears to be transient, reduced after hours and disappearing 24 h after the internalization has taken place.


1992 ◽  
Vol 29 (04) ◽  
pp. 957-966 ◽  
Author(s):  
Mark P. Van Oyen ◽  
Dimitrios G. Pandelis ◽  
Demosthenis Teneketzis

We investigate the impact of switching penalties on the nature of optimal scheduling policies for systems of parallel queues without arrivals. We study two types of switching penalties incurred when switching between queues: lump sum costs and time delays. Under the assumption that the service periods of jobs in a given queue possess the same distribution, we derive an index rule that defines an optimal policy. For switching penalties that depend on the particular nodes involved in a switch, we show that although an index rule is not optimal in general, there is an exhaustive service policy that is optimal.


Sign in / Sign up

Export Citation Format

Share Document