Prediction of Tropical Cyclone Induced Wind Field by Using Mesoscale Model and JMA Best Track

Author(s):  
Jun Tanemoto ◽  
Takeshi Ishihara
2008 ◽  
Vol 136 (11) ◽  
pp. 4334-4354 ◽  
Author(s):  
Hamish A. Ramsay ◽  
Lance M. Leslie

Abstract The interaction between complex terrain and a landfalling tropical cyclone (TC) over northeastern Australia is investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). Severe TC Larry (in March 2006) made landfall over an area of steep coastal orography and caused extensive damage. The damage pattern suggested that the mountainous terrain had a large influence on the TC wind field, with highly variable damage across relatively small distances. The major aims in this study were to reproduce the observed features of TC Larry, including track, intensity, speed of movement, size, decay rate, and the three-dimensional wind field using realistic high-resolution terrain data and a nested grid with a horizontal spacing of 1 km for the finest domain (referred to as CTRL), and to assess how the above parameters change when the terrain height is set to zero (NOTOPOG). The TC track for CTRL, including the timing and location of landfall, was in close agreement with observation, with the model eye overlapping the location of the observed eye at landfall. Setting the terrain height to zero resulted in a more southerly track and a more intense storm at landfall. The orography in CTRL had a large impact on the TC’s 3D wind field, particularly in the boundary layer where locally very high wind speeds, up to 68 m s−1, coincided with topographic slopes and ridges. The orography also affected precipitation, with localized maxima in elevated regions matching observed rainfall rates. In contrast, the precipitation pattern for the NOTOPOG TC was more symmetric and rainfall totals decreased rapidly with distance from the storm’s center. Parameterized maximum surface wind gusts were located beneath strong boundary layer jets. Finally, small-scale banding features were evident in the surface wind field over land for the NOTOPOG TC, owing to the interaction between the TC boundary layer flow and land surface characteristics.


Abstract The evolution of the tropical cyclone boundary layer (TCBL) wind field before landfall is examined in this study. As noted in previous studies, a typical TCBL wind structure over the ocean features a supergradient boundary layer jet to the left of motion and Earth-relative maximum winds to the right. However, the detailed response of the wind field to frictional convergence at the coastline is less well known. Here, idealized numerical simulations reveal an increase in the offshore radial and vertical velocities beginning once the TC is roughly 200 km offshore. This increase in the radial velocity is attributed to the sudden decrease in frictional stress once the highly agradient flow crosses the offshore coastline. Enhanced advection of angular momentum by the secondary circulation forces a strengthening of the supergradient jet near the top of the TCBL. Sensitivity experiments reveal that the coastal roughness discontinuity dominates the friction asymmetry due to motion. Additionally, increasing the inland roughness through increasing the aerodynamic roughness length enhances the observed asymmetries. Lastly, a brief analysis of in-situ surface wind data collected during the landfall of three Gulf of Mexico hurricanes is provided and compared to the idealized simulations. Despite the limited in-situ data, the observations generally support the simulations. The results here imply that assumptions about the TCBL wind field based on observations from over horizontally-homogeneous surface types - which have been well-documented by previous studies - are inappropriate for use near strong frictional heterogeneity.


2007 ◽  
Vol 54 ◽  
pp. 286-290 ◽  
Author(s):  
Hiroyasu KAWAI ◽  
Koji KAWAGUCHI ◽  
Tatsuo OHKAMA ◽  
Nobuaki TOMODA ◽  
Yukimasa HAGIMOTO ◽  
...  

2006 ◽  
Vol 21 (4) ◽  
pp. 663-669 ◽  
Author(s):  
Dongliang Wang ◽  
Xudong Liang ◽  
Yihong Duan ◽  
Johnny C. L. Chan

Abstract The fifth-generation Pennsylvania State University–National Center for Atmospheric Research nonhydrostatic Mesoscale Model is employed to evaluate the impact of the Geostationary Meteorological Satellite-5 water vapor and infrared atmospheric motion vectors (AMVs), incorporated with the four-dimensional variational (4DVAR) data assimilation technique, on tropical cyclone (TC) track predictions. Twenty-two cases from eight different TCs over the western North Pacific in 2002 have been examined. The 4DVAR assimilation of these satellite-derived wind observations leads to appreciable improvements in the track forecasts, with average reductions in track error of ∼5% at 12 h, 12% at 24 h, 10% at 36 h, and 7% at 48 h. Preliminary results suggest that the improvement depends on the quantity of the AMV data available for assimilation.


2008 ◽  
Vol 65 (12) ◽  
pp. 3652-3677 ◽  
Author(s):  
A. Khain ◽  
N. Cohen ◽  
B. Lynn ◽  
A. Pokrovsky

Abstract According to observations of hurricanes located relatively close to the land, intense and persistent lightning takes place within a 250–300-km radius ring around the hurricane center, whereas the lightning activity in the eyewall takes place only during comparatively short periods usually attributed to eyewall replacement. The mechanism responsible for the formation of the maximum flash density at the tropical cyclone (TC) periphery is not well understood as yet. In this study it is hypothesized that lightning at the TC periphery arises under the influence of small continental aerosol particles (APs), which affect the microphysics and the dynamics of clouds at the TC periphery. To show that aerosols change the cloud microstructure and the dynamics to foster lightning formation, the authors use a 2D mixed-phase cloud model with spectral microphysics. It is shown that aerosols that penetrate the cloud base of maritime clouds dramatically increase the amount of supercooled water, as well as the ice contents and vertical velocities. As a result, in clouds developing in the air with high AP concentration, ice crystals, graupel, frozen drops and/or hail, and supercooled water can coexist within a single cloud zone, which allows collisions and charge separation. The simulation of possible aerosol effects on the landfalling tropical cyclone has been carried out using a 3-km-resolution Weather Research and Forecast (WRF) mesoscale model. It is shown that aerosols change the cloud microstructure in a way that permits the attribution of the observed lightning structure to the effects of continental aerosols. It is also shown that aerosols, which invigorate clouds at 250–300 km from the TC center, decrease the convection intensity in the TC center, leading to some TC weakening. The results suggest that aerosols change the intensity and the spatial distribution of precipitation in landfalling TCs and can possibly contribute to the weekly cycle of the intensity and precipitation of landfalling TCs. More detailed investigations of the TC–aerosol interaction are required.


2017 ◽  
Vol 122 (1) ◽  
pp. 458-469 ◽  
Author(s):  
Mohammad Olfateh ◽  
David P. Callaghan ◽  
Peter Nielsen ◽  
Tom E. Baldock

2020 ◽  
Author(s):  
Elena García-Bustamante ◽  
Jorge Navarro ◽  
Jesús Fidel González-Rouco ◽  
E. Etor Lucio- Eceiza ◽  
Cristina Rojas-Labanda ◽  
...  

<p>The New European Wind Atlas (https://map.neweuropeanwindatlas.eu) is developed based on the simulated wind field over Europe from a mesoscale model coupled to a microscale component through a statistical downscaling approach. The simulation that provides mesoscale inputs within the model chain has been decided upon a careful sensitivity analysis of potential model configurations. In order to accomplish model resolutions of 3 km over Europe, the broader European domain is partitioned into a set of 10 partially overlapping tiles. The wind field is simulated with the WRF model over these tiles and finally blended into a single domain. The wind outputs from a reference simulation is evaluated on the basis of its comparison with an observational database specifically compiled and quality controlled for the purpose of validating the wind atlas over the complete European domain. The observational database includes surface wind observations at ca. 4000 sites as well as 16 masts datasets. The observational dataset of surface wind (WISED) is informative about the spatial and temporal variability of the wind climatology, punctuated with singular masts that provide information of wind velocities at height. The validation of the mesoscale simulation aims at investigating the ability of the high-resolution simulation to reproduce the observed intra-annual variability of daily wind within the entire domain.</p><p>Observed and simulated winds are higher at the British, North Sea and Baltic shores and lowlands. Correlations are typically over 0.8. Surface wind variability tends to be overestimated in the northern coasts and underestimated elsewhere and inland. Mast wind variability tends to be overestimated except for some southern sites. Seasonal differences seem minor in these respects. Biases and RMSE can help identifying if systematic errors in specific tiles take place.</p><p>Therefore, performing model simulations of a high horizontal resolution over the broader European domain is possible. We can learn about the variability of surface and height wind both from observations and model simulations. Model observations are not perfect, but observations also present uncertainties. Good quality wind data, both at the surface and in masts are a requisite for robust evaluation of models. European wide features of wind variability can be recognized both in observations and simulations.</p>


2005 ◽  
Vol 62 (9) ◽  
pp. 3193-3212 ◽  
Author(s):  
Joey H. Y. Kwok ◽  
Johnny C. L. Chan

Abstract The influence of a uniform flow on the structural changes of a tropical cyclone (TC) is investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Idealized experiments are performed on either an f plane or a β plane. A strong uniform flow on an f plane results in a weaker vortex due to the development of a vertical wind shear induced by the asymmetric vertical motion and a rotation of upper-level anticyclone. The asymmetric vertical motion also reduces the secondary circulation of the vortex. On a β plane with no flow, a broad anticyclonic flow is found to the southeast of the vortex, which expands with time. Similar to the f-plane case, asymmetric vertical motion and vertical wind shear are also found. This beta-induced shear weakens the no-flow case significantly relative to that on an f plane. When a uniform flow is imposed on a β plane, an easterly flow produces a stronger asymmetry whereas a westerly flow reduces it. In addition, an easterly uniform flow tends to strengthen the beta-induced shear whereas a westerly flow appears to reduce it by altering the magnitude and direction of the shear vector. As a result, a westerly flow enhances TC development while an easterly flow reduces it. The vortex tilt and midlevel warming found in this study agree with the previous investigations of vertical wind shear. A strong uniform flow with a constant f results in a tilted and deformed potential vorticity at the upper levels. For a variable f, such tilting is more pronounced for a vortex in an easterly flow, while a westerly flow reduces the tilt. In addition, the vortex tilt appears to be related to the midlevel warming such that the warm core in the lower troposphere cannot extent upward, which leads to the subsequent weakening of the TC.


2009 ◽  
Vol 137 (12) ◽  
pp. 4171-4187 ◽  
Author(s):  
Hamish A. Ramsay ◽  
Lance M. Leslie ◽  
Jeffrey D. Kepert

Abstract Advances in observations, theory, and modeling have revealed that inner-core asymmetries are a common feature of tropical cyclones (TCs). In this study, the inner-core asymmetries of a severe Southern Hemisphere tropical cyclone, TC Larry (2006), are investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and the Kepert–Wang boundary layer model. The MM5-simulated TC exhibited significant asymmetries in the inner-core region, including rainfall distribution, surface convergence, and low-level vertical motion. The near-core environment was characterized by very low environmental vertical shear and consequently the TC vortex had almost no vertical tilt. It was found that, prior to landfall, the rainfall asymmetry was very pronounced with precipitation maxima consistently to the right of the westward direction of motion. Persistent maxima in low-level convergence and vertical motion formed ahead of the translating TC, resulting in deep convection and associated hydrometeor maxima at about 500 hPa. The asymmetry in frictional convergence was mainly due to the storm motion at the eyewall, but was dominated by the proximity to land at larger radii. The displacement of about 30°–120° of azimuth between the surface and midlevel hydrometeor maxima is explained by the rapid cyclonic advection of hydrometeors by the tangential winds in the TC core. These results for TC Larry support earlier studies that show that frictional convergence in the boundary layer can play a significant role in determining the asymmetrical structures, particularly when the environmental vertical shear is weak or absent.


Sign in / Sign up

Export Citation Format

Share Document