Improving the Surface Quality of Additive Manufactured Metal parts by Ultrasonic Vibration-assisted Burnishing

Author(s):  
Akinori Teramachi ◽  
Jiwang Yan
2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Akinori Teramachi ◽  
Jiwang Yan

Metal additive manufacturing (AM) has been attracting attention as a new manufacturing method, but a surface finishing process is usually needed to improve the surface quality. As a new surface finishing process, ultrasonic vibration-assisted burnishing (UVAB) is promising. In this study, UVAB was performed on an additive-manufactured AlSi10 Mg workpiece to improve its surface/subsurface integrity. The effects of ultrasonic vibration (UV) and lateral tool pass width on the burnishing performance were investigated. It was observed that the surface roughness, filling ratio, and hardness of the surface layer were simultaneously improved after burnishing. This study shows the effectiveness of applying UVAB to improve the surface quality of additive-manufactured products for various industrial uses.


2012 ◽  
Vol 490-495 ◽  
pp. 1551-1554
Author(s):  
Jian Zhong Zhang ◽  
Xin Wang ◽  
Yue Zhang

It has been one of the difficulties that high-precision small hole on stainless steel is machined. The supersonic vibration boring acoustic system is installed in the lathe. The supersonic wave energy applies to tool to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Surface quality and shape precision is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of stainless steel are also summarized. The test results show that the ultrasonic vibration boring by double cutter is of very superior cutting mechanism and is a high-precision thin - long deep - hole machining of stainless steel materials, efficient cutting methods.


2010 ◽  
Vol 42 ◽  
pp. 436-439 ◽  
Author(s):  
Xin Long Kang ◽  
Dong Man Yu ◽  
Hui Guo ◽  
Chang Pei Shang

This paper presents a deep analysis for the effects of the principles and Electrical Parameters of ultrasonic vibration aided EDM in gas on the roughness of finish machined surface by briefly describing the principles and process characteristics of EDM and combined ultrasonic discharge machining technology, and qualitatively obtains the law of the effects of electrical parameters on the quality of machined surface from the analysis of experimental results. The comparison among the three EDM methods shows the superiority and development prospect of ultrasonic vibration aided EDM in gas.


2010 ◽  
Vol 126-128 ◽  
pp. 143-147
Author(s):  
Yan Yan Yan ◽  
Bo Zhao ◽  
Jun Li Liu

Based on good processing property of two-dimentional ultrasonic vibration assisted grinding (TUVAG), the precision finishing of nano-zirconia toughened alumina ceramics (nano-ZTA) is carried out. According to theoretical analysis, TUVAG may obtain higher machining efficiency and better surface quality. Especially, experimental results show it may obtain the compressive stress in the finished surface of nano-ZTA that may restrain the expansion of surface microcrack, and surface residual stress of nano-ZTA under TUVAG differs from that under diamond grinding, and TUVAG may obtain the better surface quality of nano-ZTA than diamond grinding, as is characterized by scanning electronic microscope (SEM). As a result, it is good for TUVAG as a kind of processing method for nano-ZTA.


2014 ◽  
Vol 621 ◽  
pp. 134-139
Author(s):  
Jing Lin Tong ◽  
Chang Juan Zhang ◽  
Bo Zhao

This paper researched the crack propagation and the variation of microstructure for ZTA ceramics under ultrasonic vibration grinding. To interpret the phenomenon, the nonlocal theory was introduced to establish the constitutive model under the ultrasonic vibration. Grinding experiments on surface quality of nanoZrO2 ceramic are carried out using diamond grinding in different condition, both with and without ultrasonic vibration. Experimental results show the surface quality after two-dimensional ultrasonic assisted grinding is superior to that after common grinding. Meanwhile, the effects of amplitudes and frequencies on ZrO2 ceramics crack propagation were analyzed by SEM. The results show that the crack propagation rate decrease with the amplitudes and frequencies increasing, this is because that the nonlocal attenuation ratio reduced and the nonlocal effects also the strongest. The results of experiments are in accordance with the theoretical conclusions drawn from the nonlocal theory, which verifies that the act ion of ultrasonic vibration can actually postpone the ceramic crack propagation rate.


2013 ◽  
Vol 690-693 ◽  
pp. 3307-3311
Author(s):  
Jian Zhong Zhang ◽  
Nian Cheng Zhang ◽  
Yue Zhang

It has been one of the difficulties that high-precision thin hole is machined. The supersonic vibration reaming acoustic system is installed in the lathe. The supersonic wave energy applies to reamer to create pulse power on the cutting process. The separating vibration cutting is achieved to make the pulse force. The tests on reaming surface quality and precision are carried. The quality of surface and accuracy machined by this method is more than that by grinding. The reaming process is stability. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Surface quality and shape precision is greatly improved. The regulations of the ultrasonic vibration reaming thin hole in hardened steel are also summarized. The test results show that the ultrasonic vibration reaming by reamer is of very superior cutting mechanism. It is efficient cutting methods for high-precision thin-hole machining of hardened materials.


Sign in / Sign up

Export Citation Format

Share Document