scholarly journals Inhibitory effect of receptor for advanced glycation end products (RAGE) on the TGF-β-induced alveolar epithelial to mesenchymal transition

2011 ◽  
Vol 43 (9) ◽  
pp. 517 ◽  
Author(s):  
Jeong Sup Song ◽  
Chun Mi Kang ◽  
Chan Kwon Park ◽  
Hyung Kyu Yoon ◽  
Sook Young Lee ◽  
...  
2021 ◽  
Author(s):  
Rajkishor Nishad ◽  
Tahaseen V Syed ◽  
Manga Motrapu ◽  
Rajesh Kavvuri ◽  
Kiranmayi Kodali ◽  
...  

Abstract Background The prevalence of diabetes reaches epidemic proportions, affecting the incidence of diabetic nephropathy (DN) and associated end-stage kidney disease (ESKD). Diabetes is the leading cause of ESKD since 30–40% of diabetic patients develop DN. Albuminuria and eGFR have been considered a surrogate outcome of chronic kidney disease, and the search for a biomarker that predicts progression to diabetic kidney disease is intense.Methods We analyzed the association of serum advanced glycation end-products (AGEs) index (AGI) with impaired kidney function in uncontrolled diabetic patients (type II, n = 130) with albuminuria ranging from (150 to 450 mg/day). The kidney biopsy specimens were also examined for the association of AGEs, particularly carboxymethyl lysine (CML) with kidney function. Further, we also assessed the effect of carboxymethyl lysine on glomerular injury and podocytopathy in experimental animals.Results We observed a strong correlation between AGI and impaired kidney function in miroalbuminuric patients with hyperglycemia. A significant association between CML levels and impaired kidney function was noticed. Administration of CML in mice showed heavy proteinuria and glomerular abnormalities. Reduced podocyte number observed in mice administered with CML could be attributed to the epithelial-mesenchymal transition (EMT) of podocytes. Conclusion Serum AGEs could be independently related to the podocyte injury vis-a-vis the risk of DN progression to ESKD in patients with microalbuminuria. AGEs or CML could be considered a prognostic marker to assess microalbuminuria progression to ESKD in diabetic patients.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Seung Hwan Hwang ◽  
Shin Hwa Kwon ◽  
Set Byeol Kim ◽  
Soon Sung Lim

Stauntonia hexaphylla(Thunb.) Decne. (Lardizabalaceae) leaves (SHL) have been used traditionally as analgesics, sedatives, diuretics, and so on, in China. To date, no data have been reported on the inhibitory effect of SHL and its constituents on rat lens aldose reductase (RLAR) and advanced glycation end products (AGEs). Therefore, the inhibitory effect of compounds isolated from SHL extract on RLAR and AGEs was investigated to evaluate potential treatments of diabetic complications. The ethyl acetate (EtOAC) fraction of SHL extract showed strong inhibitory activity on RLAR and AGEs; therefore, EtOAc fraction (3.0 g) was subjected to Sephadex LH-20 column chromatography, for further fractionation, with 100% MeOH solvent system to investigate its effect on RLAR and AGEs. Phytochemical investigation of SHL led to the isolation of seven compounds. Among the isolated compounds, chlorogenic acid, calceolarioside B, luteolin-3′-O-β-D-glucopyranoside, quercetin-3-O-β-D-glucopyranoside, and luteolin-7-O-β-D-glucopyranoside exhibited significant inhibitory activity against RLAR with IC50in the range of 7.34–23.99 μM. In addition, 3-(3,4-dihydroxyphenyl) propionic acid, neochlorogenic acid, and luteolin-3′-O-β-D-glucopyranoside exhibited the most potent inhibitory activity against formation of AGEs, with an IC50value of 115.07–184.06 μM, compared to the positive control aminoguanidine (820.44 μM). Based on these findings, SHL dietary supplements could be considered for the prevention and/or treatment of diabetes complication.


2011 ◽  
Vol 300 (4) ◽  
pp. L516-L525 ◽  
Author(s):  
Naoko Yamakawa ◽  
Tokujiro Uchida ◽  
Michael A. Matthay ◽  
Koshi Makita

Although the receptor for advanced glycation end products (RAGE) has been used as a biological marker of alveolar epithelial cell injury in clinical studies, the mechanism for release of soluble RAGE from lung epithelial cells has not been well studied. Therefore, these studies were designed to determine the mechanism for release of soluble RAGE after lipopolysaccharide (LPS) challenge. For these purposes, alveolar epithelial cells from rat lungs were cultured on Transwell inserts, and LPS was added to the apical side (500 μg/ml) for 16 h on day 7. On day 7, RAGE was expressed predominantly in surfactant protein D-negative cells, and LPS challenge induced release of RAGE into the medium. This response was partially blocked by matrix metalloproteinase (MMP) inhibitors. Transcripts of MMP-3 and MMP-13 were upregulated by LPS, whereas RAGE transcripts did not change. Proteolysis by MMP-3 and MMP-13 resulted in soluble RAGE expression in the bronchoalveolar lavage fluid in the in situ rat lung, and this reaction was inhibited by MMP inhibitors. In human studies, both MMP-3 and -13 antigen levels were significantly correlated with the level of RAGE in pulmonary edema fluid samples. These results support the conclusion that release of RAGE is primarily mediated by proteolytic damage in alveolar epithelial cells in the lung, caused by proteases in acute inflammatory conditions in the distal air spaces.


2015 ◽  
Vol 6 (2) ◽  
pp. 584-589 ◽  
Author(s):  
Lianqi Huang ◽  
Xin Yang ◽  
Anlin Peng ◽  
Hui Wang ◽  
Xiang Lei ◽  
...  

Leonurine inhibits AGE formation through scavenging of the carbonyl species


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Brigitta Buttari ◽  
Elisabetta Profumo ◽  
Francesco Facchiano ◽  
Elif Inci Ozturk ◽  
Luca Segoni ◽  
...  

Advanced glycation end products (AGEs), generated through nonenzymatic glycosylation of proteins, lipids, and nucleic acids, accumulate in the body by age thus being considered as biomarkers of senescence. Senescence is characterized by a breakdown of immunological self-tolerance, resulting in increased reactivity to self-antigens. Previous findings suggest that AGE and its receptor RAGE may be involved in the pathogenesis of autoimmune reactions through dendritic cell (DC) activation. The aim of this study was to investigate whether resveratrol, a polyphenolic antioxidant compound with tolerogenic effects on DCs, was able to counteract the mechanisms triggered by AGE/RAGE interaction on DCs. By immunochemical and cytofluorimetric assays, we demonstrated thatin vitropretreatment of human monocyte-derived DCs with resveratrol prevents DC activation in response to glucose-treated albumin (AGE-albumin). We found that resveratrol exerts an inhibitory effect on DC surface maturation marker and RAGE up-regulation in response to AGE-albumin. It also inhibited proinflammatory cytokine expression, allostimulatory ability upregulation, mitogen-activated protein (MAP) kinases, and NF-κB activation in AGE-albumin-stimulated DCs. We suggest that resveratrol, by dismantling AGE/RAGE signaling on DCs may prevent or reduce increased reactivity to self-molecules in aging.


Sign in / Sign up

Export Citation Format

Share Document