Establishment of a quantitative RT-pCR for detection of vascular cell adhesion molecule-1 transcripts in endothelial cells after stimulation with advanced glycation endproducts.

Author(s):  
T Kunt ◽  
T Forst ◽  
A Wilhelm ◽  
A Zschäbitz ◽  
A Göpfert ◽  
...  
Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4286-4295 ◽  
Author(s):  
B Schnyder ◽  
S Lugli ◽  
N Feng ◽  
H Etter ◽  
RA Lutz ◽  
...  

Interleukin-4 (IL-4) and IL-13 exert similar, nonadditive effects on endothelial cells, inducing vascular cell adhesion molecule-1 (VCAM-1) expression and subsequent transmigration of eosinophils. The receptor for IL-4 and IL-13 was described as a shared heteromultimeric complex in which the common gamma-chain (gamma c) subunit was essential for activity. Endothelial cell bound both cytokines with high affinity; by flow cytofluorometry and reverse transcription-polymerase chain reaction (RT-PCR), they expressed IL-4 receptor alpha (IL-4R alpha) but did not express the gamma c of the IL-2R. Radioligand cross-linking experiments followed by immunoprecipitation with the monoclonal antibody (MoAb) S697 to the IL-4R alpha showed IL-4-specific binding at 130 kD, the IL-4R alpha, and to a minor extent to a double band coimmunoprecipitated at 65 to 75 kD. [125 I]IL-13 bound predominantly to the 65- to 75- kD band and with a trace amount of binding at 130 kD. However, no ligand-cross-linked receptor was precipitated by the MoAb S697, indicating a cognate novel IL-13-binding subunit. Excess unlabeled IL-4 completely displaced IL-13 binding. Similarly, nonsignaling IL-4 (Y124D)-mutant abolished IL-4- and IL-13-mediated signal transduction. Unlabeled IL-13 competed successfully for IL-4 binding at 65 to 75 kD but was unable to completely displace Il-4 from its binding to the IL-4R alpha. The MoAb TUGh4, specific for the gamma c, failed to precipitate ligand-cross-linked IL-4R and IL-13R. Therefore, the subunit structure of the functional receptors for IL-4 and IL-13 on human endothelial cells does not use or require the common gamma c of the IL-2R.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3904-3911 ◽  
Author(s):  
Kamala D. Patel

We examined the mechanisms used by eosinophils to tether and accumulate on interleukin-4 (IL-4)–stimulated human umbilical vein endothelial cells (HUVECs) under flow conditions. As previously reported, HUVECs treated for 24 hours with 20 ng/mL IL-4 had increased expression of P-selectin and vascular cell adhesion molecule-1 (VCAM-1) but not E-selectin. We found that eosinophils tethered and rolled on IL-4–stimulated HUVECs at physiologic shear stresses. Eosinophil rolling was quickly followed by firm adhesion. Treatment with either an anti–P-selectin monoclonal antibody (MoAb) or an anti–VCAM-1 MoAb decreased both eosinophil tethering and accumulation at 2 dyn/cm2. VCAM-1 interacts with 4-integrins expressed on eosinophils. We found that an anti–4-integrin MoAb also blocked eosinophil tethering and accumulation at 2 dyn/cm2. None of these MoAbs alone had an impact on eosinophil accumulation at lower shear stresses, but when either an anti–VCAM-1 or an anti–4-integrin MoAb was used in combination with an anti–P-selectin MoAb, all eosinophil tethering and accumulation on IL-4–stimulated HUVECs were blocked. This was true at both high and low shear stresses. These data show that both P-selectin and VCAM-1 are required to tether eosinophils at high shear stresses, but at low shear stresses these adhesion proteins can act independently to recruit eosinophils to IL-4–stimulated HUVECs.


Sign in / Sign up

Export Citation Format

Share Document