scholarly journals miR-218 inhibits the invasion and migration of colon cancer cells by targeting the PI3K/Akt/mTOR signaling pathway

2015 ◽  
Vol 35 (5) ◽  
pp. 1301-1308 ◽  
Author(s):  
XIANGLIANG ZHANG ◽  
HUIJUAN SHI ◽  
HONGSHENG TANG ◽  
ZHIYUAN FANG ◽  
JIPING WANG ◽  
...  
Molecules ◽  
2017 ◽  
Vol 22 (10) ◽  
pp. 1657 ◽  
Author(s):  
Małgorzata Kapral ◽  
Joanna Wawszczyk ◽  
Katarzyna Jesse ◽  
Monika Paul-Samojedny ◽  
Dariusz Kuśmierz ◽  
...  

KSBB Journal ◽  
2015 ◽  
Vol 30 (5) ◽  
pp. 223-229 ◽  
Author(s):  
Bo Min Kim ◽  
Guen Tae Kim ◽  
Eun Gyeong Lim ◽  
Eun Ji Kim ◽  
Sang Yong Kim ◽  
...  

2019 ◽  
Vol 19 (14) ◽  
pp. 1754-1761 ◽  
Author(s):  
Yayun Qian ◽  
Yan Yan ◽  
Hongmei Lu ◽  
Tingting Zhou ◽  
Mengying Lv ◽  
...  

Background: Rapamycin receptor inhibitors have been applied in the clinic and achieved satisfactory therapeutic effect recently. The mechanisms did not clearly show how the Celastrus orbiculatus Extracts (COE) inhibited the expression of the mammalian Target of Rapamycin (mTOR) in human gastric cancer cells. The aim of this study was to investigate whether the COE inhibited the metastasis through the mTOR signaling pathway in human gastric cancer MGC-803 cells. Methods: The abnormal expression level of mTOR protein was detected by immunohistochemistry in human gastric cancer tissue. The MGC-803/mTOR- cells were constructed by knockdown of mTOR using lentivirus infection technique. The human gastric cancer MGC-803/mTOR- cells were treated with different concentrations (20, 40, 80 μg/ml) of COE for 24 hours. The ability of cell metastasis was analyzed by the cell invasion and migration assay. The expression levels of PI3K/Akt/mTOR signaling pathway were detected by Western Blotting. Results: COE inhibited the proliferation, invasion and migration of MGC-803/mTOR- cells in a concentrationdependent manner. The expression of E-cadherin protein increased, and the expression of N-cadherin and Vimentin decreased simultaneously in the MGC-803/mTOR- cells. 4EBP1, p-4EBP1, P70S6k, p-P70S6k, mTOR, p-mTOR, PI3K and Akt proteins in MGC-803/mTOR- cells were reduced in a dose-dependent manner. Conclusion: COE could not only inhibit cell growth, invasion and migration, but also inhibit the epithelialmesenchymal transition of gastric cancer cells. The molecular mechanism of COE inhibited the metastasis which may be related to the PI3K/Akt/mTOR signal pathway. This study provides ideas for the development of new anti-gastric cancer drugs.


2019 ◽  
Vol 39 (2) ◽  
pp. 173-181 ◽  
Author(s):  
M Chen ◽  
L-L Zhu ◽  
J-L Su ◽  
G-L Li ◽  
J Wang ◽  
...  

Lung cancer is the main cause of cancer incidence and mortality around the world. Prucalopride is an agonist for the 5-hydroxytryptamine 4 receptor, but it was unknown whether prucalopride could be used to treat lung cancer. To investigate the biological effects of prucalopride on proliferation, apoptosis, invasion, and migration of lung cancer cells, and its underlying molecular mechanism in the progression of lung cancer, we performed this study. The Cell Counting Kit 8 assay was used to measure the proliferation of A549/A427 lung cancer cells treated with prucalopride. Transwell assay was applied to evaluate cell invasion and migration. Cell apoptosis was detected by flow cytometry and Western blot analyses. The expression levels of related proteins in the PI3K/AKT/mTor signaling pathway were analyzed by Western blotting. Prucalopride inhibited the proliferation, invasion, and migration of A549/A427 human lung cancer cells. It also induced autophagy and apoptosis and decreased the expression of the phosphorylated protein kinase B (AKT) and mammalian target of rapamycin (mTor) in these cells. This study implied an inhibitory role for prucalopride in the progression of human lung cancer.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Yong Ji ◽  
Yiqian Liu ◽  
Changchun Sun ◽  
Lijiang Yu ◽  
Zhao Wang ◽  
...  

AbstractAs a result of mutations in the upstream components of the Wnt/β-catenin signaling pathway, this cascade is abnormally activated in colon cancer. Hence, identifying the activation mechanism of this pathway is an urgent need for the treatment of colon cancer. Here, we found an increase in ADCK1 (AarF domain-containing kinase 1) expression in clinical specimens of colon cancer and animal models. Upregulation of ADCK1 expression promoted the colony formation and infiltration of cancer cells. Downregulation of ADCK1 expression inhibited the colony formation and infiltration of cancer cells, in vivo tumorigenesis, migration, and organoid formation. Molecular mechanistic studies demonstrated that ADCK1 interacted with TCF4 (T-cell factor 4) to activate the β-catenin/TCF signaling pathway. In conclusion, our research revealed the functions of ADCK1 in the development of colon cancer and provided potential therapeutic targets.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengqin Wang ◽  
Hanzhong Zhang ◽  
Zhigang Cheng

EPHA2 is a member of the ephrin receptor tyrosine kinase family and is closely related to the malignant tumor progression. The effect of EPHA2 on OSCC is not clear. This study explored the role of EPHA2 and AKT/mTOR signaling pathways in Cal-27 cell invasion and migration. The expression of EPHA2 and EPHA4 in human OSCC and normal oral tissue was detected by immunohistochemistry. EPHA2-overexpressing and EPHA2-knockdown Cal-27 cells were established, and the cells were treated with an AKT inhibitor (MK2206) and mTOR inhibitor (RAD001). The expression of EPHA2 was detected by qRT-PCR, cell proliferation was evaluated by MTT assay, cell migration and invasion were examined by scratch and Transwell assay, and cell morphology and apoptosis were assessed by Hoechst 33258 staining. Western blot was performed to detect the expression of proteins related to AKT/mTOR signaling, cell cycle, and pseudopod invasion. EPHA2 and EPHA4 were highly expressed in clinical human OSCC. Overexpression of EPHA2 promoted the proliferation, migration, and invasion of Cal-27 cells, inhibited cell cycle blockage and apoptosis, and enhanced the activity of the AKT/mTOR signaling pathway. MK2206 (AKT inhibitor) and RAD001 (mTOR inhibitor) reversed the effect of EPHA2 overexpression on the biological behavior of Cal-27 cells. EPHA2 promotes the invasion and migration of Cal-27 human OSCC cells by enhancing the AKT/mTOR signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document