scholarly journals G-protein-coupled receptor 30 mediates the effects of estrogen on endothelial cell tube formation in vitro

2017 ◽  
Vol 39 (6) ◽  
pp. 1461-1467 ◽  
Author(s):  
Liyuan Zhou ◽  
Hong Chen ◽  
Xun Mao ◽  
Hongbo Qi ◽  
Philip N. Baker ◽  
...  
2001 ◽  
Vol 8 (3) ◽  
pp. 693-704 ◽  
Author(s):  
Menq-Jer Lee ◽  
Shobha Thangada ◽  
Ji-Hye Paik ◽  
Gopal P. Sapkota ◽  
Nicolas Ancellin ◽  
...  

2006 ◽  
Vol 27 (4) ◽  
pp. 1334-1347 ◽  
Author(s):  
Li V. Yang ◽  
Caius G. Radu ◽  
Meenakshi Roy ◽  
Sunyoung Lee ◽  
Jami McLaughlin ◽  
...  

ABSTRACT GPR4 is a G protein-coupled receptor expressed in the vasculature, lung, kidney, and other tissues. In vitro ectopic overexpression studies implicated GPR4 in sensing extracellular pH changes leading to cyclic AMP (cAMP) production. To investigate its biological roles in vivo, we generated GPR4-deficient mice by homologous recombination. Whereas GPR4-null adult mice appeared phenotypically normal, neonates showed a higher frequency of perinatal mortality. The average litter size from GPR4−/− intercrosses was ∼30% smaller than that from GPR4+/+ intercrosses on N3 and N5 C57BL/6 genetic backgrounds. A fraction of knockout embryos and neonates had spontaneous hemorrhages, dilated and tortuous subcutaneous blood vessels, and defective vascular smooth muscle cell coverage. Mesangial cells in kidney glomeruli were also significantly reduced in GPR4-null neonates. Some neonates exhibited respiratory distress with airway lining cell metaplasia. To examine whether GPR4 is functionally involved in vascular pH sensing, an ex vivo aortic ring assay was used under defined pH conditions. Compared to wild-type aortas, microvessel outgrowth from GPR4-null aortas was less inhibited by acidic extracellular pH. Treatment with an analog of cAMP, a downstream effector of GPR4, abolished microvessel outgrowth bypassing the GPR4-knockout phenotype. These results suggest that GPR4 deficiency leads to partially penetrant vascular abnormalities during development and that this receptor functions in blood vessel pH sensing.


Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4171-4180 ◽  
Author(s):  
Takashi Nakakura ◽  
Chihiro Mogi ◽  
Masayuki Tobo ◽  
Hideaki Tomura ◽  
Koichi Sato ◽  
...  

Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown as a receptor for protons. In the present study, we aimed to know whether OGR1 plays a role in insulin secretion and, if so, the manner in which it does. To this end, we created OGR1-deficient mice and examined insulin secretion activity in vivo and in vitro. OGR1 deficiency reduced insulin secretion induced by glucose administered ip, although it was not associated with glucose intolerance in vivo. Increased insulin sensitivity and reduced plasma glucagon level may explain, in part, the unusual normal glucose tolerance. In vitro islet experiments revealed that glucose-stimulated insulin secretion was dependent on extracellular pH and sensitive to OGR1; insulin secretion at pH 7.4 to 7.0, but not 8.0, was significantly suppressed by OGR1 deficiency and inhibition of Gq/11 proteins. Insulin secretion induced by KCl and tolbutamide was also significantly inhibited, whereas that induced by several insulin secretagogues, including vasopressin, a glucagon-like peptide 1 receptor agonist, and forskolin, was not suppressed by OGR1 deficiency. The inhibition of insulin secretion was associated with the reduction of glucose-induced increase in intracellular Ca2+ concentration. In conclusion, the OGR1/Gq/11 protein pathway is activated by extracellular protons existing under the physiological extracellular pH of 7.4 and further stimulated by acidification, resulting in the enhancement of insulin secretion in response to high glucose concentrations and KCl.


2019 ◽  
Vol 24 (9) ◽  
pp. 915-927
Author(s):  
P. Heine ◽  
G. Witt ◽  
A. Gilardi ◽  
P. Gribbon ◽  
L. Kummer ◽  
...  

The development of cell-free high-throughput (HT) methods to screen and select novel lead compounds remains one of the key challenges in G protein-coupled receptor (GPCR) drug discovery. Mutational approaches have allowed the stabilization of GPCRs in a purified and ligand-free state. The increased intramolecular stability overcomes two major drawbacks for usage in in vitro screening, the low receptor density on cells and the low stability in micelles. Here, an HT fluorescence polarization (FP) assay for the neurotensin receptor type 1 (NTS1) was developed. The assay operates in a 384-well format and is tolerant to DMSO. From a library screen of 1272 compounds, 12 (~1%) were identified as primary hits. These compounds were validated in orthogonal assay formats using surface plasmon resonance (SPR), which confirmed binding of seven compounds (0.6%). One of these compounds showed a clear preference for the orthosteric binding pocket with submicromolar affinity. A second compound revealed binding at a nonorthosteric binding region and showed specific biological activity on NTS1-expressing cells. A search of analogs led to further enhancement of affinity, but at the expense of activity. The identification of GPCR ligands in a cell-free assay should allow the expansion of GPCR pharmaceuticals with antagonistic or agonistic activity.


RSC Advances ◽  
2015 ◽  
Vol 5 (60) ◽  
pp. 48551-48557 ◽  
Author(s):  
Mohamed A. Shehata ◽  
Hanna Belcik Christensen ◽  
Vignir Isberg ◽  
Daniel Sejer Pedersen ◽  
Andreas Bender ◽  
...  

We report the first pharmacological tool agonist for in vitro characterization of the orphan receptor GPR132, preliminary structure–activity relationships based on 32 analogs and a suggested binding mode from docking.


2009 ◽  
Vol 425 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Sonika Patial ◽  
Jiansong Luo ◽  
Katie J. Porter ◽  
Jeffrey L. Benovic ◽  
Narayanan Parameswaran

TNFα (tumour necrosis factor α) is a multifunctional cytokine involved in the pathophysiology of many chronic inflammatory diseases. TNFα activation of the NF-κB (nuclear factor κB) signalling pathway particularly in macrophages has been implicated in many diseases. We demonstrate in the present study that GRK2 and GRK5 (G-protein-coupled-receptor kinases 2 and 5) regulate TNFα-induced NF-κB signalling in Raw 264.7 macrophages. RNAi (RNA interference) knockdown of GRK2 or GRK5 in macrophages significantly inhibited TNFα-induced IκBα (inhibitory κBα) phosphorylation and degradation, NF-κB activation and expression of the NF-κB-regulated gene MIP1β (macrophage inflammatory protein 1β). Consistent with these results, overexpression of GRK2 or GRK5 enhanced TNFα-induced NF-κB activity. In addition, we show that GRK2 and GRK5 interacted with IκBα via the N-terminal domain of IκBα and that IκBα is a substrate for GRK2 and GRK5 in vitro. Furthermore, we also found that GRK5, but not GRK2, phosphorylated IκBα at the same amino acid residues (Ser32/Ser36) as that of IKKβ (IκB kinase β). Interestingly, associated with these results, knockdown of IKKβ in Raw 264.7 macrophages did not affect TNFα-induced IκBα phosphorylation. Taken together, these results demonstrate that both GRK2 and GRK5 are important and novel mediators of a non-traditional IκBα/NF-κB signalling pathway.


Sign in / Sign up

Export Citation Format

Share Document