scholarly journals Long-term culture in vitro impairs the immunosuppressive activity of mesenchymal stem cells on T cells

2012 ◽  
Vol 6 (5) ◽  
pp. 1183-1189 ◽  
Author(s):  
XUE-YI LI ◽  
JIN DING ◽  
ZHAO-HUI ZHENG ◽  
XIAO-YAN LI ◽  
ZHEN-BIAO WU ◽  
...  
2017 ◽  
Vol 19 (3) ◽  
pp. 159-170 ◽  
Author(s):  
Agnese Gugliandolo ◽  
Thangavelu Soundara Rajan ◽  
Domenico Scionti ◽  
Francesca Diomede ◽  
Placido Bramanti ◽  
...  

Neuroreport ◽  
2012 ◽  
Vol 23 (8) ◽  
pp. 513-518 ◽  
Author(s):  
Guo-hui Lu ◽  
Wang-shi Yong ◽  
Zhi-min Xu ◽  
Yi-quan Ke ◽  
Xiao-dan Jiang ◽  
...  

2016 ◽  
Vol 13 (6) ◽  
pp. 5207-5215 ◽  
Author(s):  
YAJUN GU ◽  
TAO LI ◽  
YANLING DING ◽  
LINGXIAN SUN ◽  
TAO TU ◽  
...  

2021 ◽  
Vol 30 ◽  
pp. 096368972198960
Author(s):  
Chengcheng Shen ◽  
Yuangang Lu ◽  
Jianghe Zhang ◽  
Yujie Li ◽  
Yiming Zhang ◽  
...  

The chronic wound induced by diabetes has poor efficacy and could lead to amputation. The repair function of mesenchymal stem cells (MSCs) impaired after long-term culture in vitro. Studies have shown that the proto-oncogene c-Casitas b-lineage lymphoma (c-Cbl) can regulate receptor- and non-receptor tyrosine kinase, which was also involved in the angiogenesis process. This study aimed to explore the regulative effect of c-Cbl on the proangiogenic functions of long-term cultured MSCs and evaluate its pro-healing effect on diabetic wounds. In this study, the c-Cbl level was downregulated by locked nucleic acid–modified antisense oligonucleotide gapmers (LNA Gapmers). We detected the effect of c-Cbl downregulation on long-term cultured MSCs in terms of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signal, cellular proliferation, senescence, migration, and angiogenic factors paracrine activity in vitro. In vivo, we observed the pro-healing effect of long-term cultured MSCs, with or without c-Cbl downregulation, on the diabetic wound. We found that the phosphorylation level of c-Cbl increased and that of Akt decreased in passage 10 (P10) MSCs compared with passage 3 (P3) MSCs ( P < 0.05). Additionally, the proliferation, paracrine, and migration capacity of P10 MSCs decreased significantly, accompanied by the increase of cellular senescence ( P < 0.05). However, these functions, including PI3K/Akt activity of P10 MSCs, have been improved by c-Cbl downregulation ( P < 0.05). Compared with P10 MSCs treatment, treatment with c-Cbl downregulated P10 MSCs accelerated diabetic wound healing, as defined by a more rapid wound closure ( P < 0.05), more neovascularization ( P < 0.05), and higher scores of wound histological assessment ( P < 0.05) in a diabetic rat model. Our findings suggested that c-Cbl downregulation could attenuate the impairment of proangiogenic functions in MSCs induced by long-term culture in vitro and improve the effect of long-term cultured MSCs in promoting diabetic wound healing.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2286-2286
Author(s):  
Haiping He ◽  
Tokiko Nagamura-Inoue ◽  
Yuki Yamamoto ◽  
Mori Yuka ◽  
Hajime Tsunoda ◽  
...  

Abstract Background Human mesenchymal stem cells (MSCs) can be isolated from several tissues, including bone marrow, umbilical cord, placenta, and adipose tissue. In recent reports, MSCs have the ability to migrate to inflammatory tissues and suppress adverse immune reactions. In fact, BM-derived MSCs are already applied for the patients with acute graft versus host disease (aGVHD) with promising efficacy. To avoid the potential risk of BM harvest, we intended to use umbilical cord Wharton's jelly (WJ) as an alternative source for MSCs. However, the mechanism by which WJ-MSCs exert their immunosuppressive effects is not completely understood. Methods Umbilical cord was collected after informed consent from the mother. WJ-MSCs were isolated by explants method and in part, continued to culture for further expansion by passage 3 (P3). Otherwise, the remaining WJ-MSCs were cryopreserved in P1. Mixed lymphocyte reaction (MLR) was performed on WJ-MSCs or control. CFSE-labeled human peripheral blood (PB) or cord blood(CB) derived mononuclear cells (MNCs) as the responder cells were mixed with irradiated (50Gy) human CB-derived dendrite cells as stimulator cells at a 10:1 ratio, in the presence of low-dose anti-CD3 antibody. CFSE-labeled responder cells were analyzed by FACS. Results WJ-MSCs corresponded to the minimal criteria of MSCs defined by the International Society for Cell Therapy. Thus WJ-MSCs showed spindle-shaped plastic adherent with positive CD105, CD73, CD90, and negative for CD45, CD34, CD14, CD19, and HLA -DR. They also have the ability of differentiation into osteoblasts, adipocytes, chondroblasts in vitro. In MLR, WJ-MSCs efficiently inhibited the responder T cells derived from the same donor of WJ-MSCs, triggered by autologous or allogeneic dendritic cells (DC)(Autologous and allogeneic MLR). Moreover, 3rd party-derived WJ-MSCs also strongly suppressed allogeneic responder T cells proliferation triggered by allogeneic DC(3rd party MLR) (n=3). And WJ-MSCs could inhibit the proliferation of T cells upon PHA-L stimulation. In order to study whether the inhibitory effects of WJ-MSCs on MLR requires the cell to cell contact or not, we next performed MLR on separated WJ-MSCs using by transwell. We observed the inhibitory effect of WJ-MSCs on MLR, although the immunosuppressive effect of the separated WJ-MSCs was much less than that of cell to cell contact. The supernatants of WJ-MSCs, which were derived from 80% confluent WJ-MSCs indicated the mild inhibitory effects on MLR. These inhibitory effects of the WJ-MSCs on MLR were reversed by the addition of indoleamine 2,3-dioxygenase (IDO) inhibitor, 1-methyltryptophan (1-MT) , in a dose dependent manner as shown in Figure 1 (n=3). We also studied the influence of the passage of WJ-MSCs on MLR. The inhibitory effect was comparable among the early passage (∼P3) and long-term passage (P10), although the long-term passage did not show the osteogenic differentiation. Discussion We demonstrated WJ-MSCs have the immunosuppressive effect on the stimulated T cells in autologous, allogeneic and 3rd party MLR setting, indicating that immunosuppressive effect of WJ-MSCs is not restricted by MHC. Soluble IDO may play an important role in immunosuppressive effect of MLR, although we need to detect the additional factors especially in cell to cell contact between WJ-MSCs and the responder T cells. Conclusively, WJ-MSCs may be a feasible alternative non-invasive source of BM-MSCs for GVHD treatment and WJ-MSCs banking can be considered for the prompt clinical applications. Disclosures: No relevant conflicts of interest to declare


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Angela Bentivegna ◽  
Mariarosaria Miloso ◽  
Gabriele Riva ◽  
Dana Foudah ◽  
Valentina Butta ◽  
...  

Mesenchymal stem cells (MSCs) hold great promise for the treatment of numerous diseases. A major problem for MSC therapeutic use is represented by the very low amount of MSCs which can be isolated from different tissues; thusex vivoexpansion is indispensable. Long-term culture, however, is associated with extensive morphological and functional changes of MSCs. In addition, the concern that they may accumulate stochastic mutations which lead the risk of malignant transformation still remains. Overall, the genome of human MSCs (hMSCs) appears to be apparently stable throughout culture, though transient clonal aneuploidies have been detected. Particular attention should be given to the use of low-oxygen environment in order to increase the proliferative capacity of hMSCs, since data on the effect of hypoxic culture conditions on genomic stability are few and contradictory. Furthermore, specific and reproducible epigenetic changes were acquired by hMSCs duringex vivoexpansion, which may be connected and trigger all the biological changes observed. In this review we address current issues on long-term culture of hMSCs with a 360-degree view, starting from the genomic profiles and back, looking for an epigenetic interpretation of their genetic stability.


2018 ◽  
Author(s):  
Sanjay K. Kureel ◽  
Pankaj Mogha ◽  
Akshada Khadpekar ◽  
Vardhman Kumar ◽  
Rohit Joshi ◽  
...  

AbstractHuman mesenchymal stem cells (hMSCs), when cultured on tissue culture plate (TCP) for in vitro expansion, they spontaneously lose their proliferative capacity and multi-lineage differentiation potential. They also lose their distinct spindle morphology and become large and flat. After a certain number of population doubling, they enter into permanent cell cycle arrest, called senescence. This is a major roadblock for clinical use of hMSCs which demands large number of cells. A cell culture system is needed which can maintain the stemness of hMSCs over long term passages yet simple to use. In this study, we explore the role of substrate rigidity in maintaining stemness. hMSCs were serially passaged on TCP and 5 kPa poly-acrylamide gel for 20 population doubling. It was found that while on TCP, cell growth reached a plateau at cumulative population doubling (CPD) = 12.5, on 5 kPa gel, they continue to proliferate linearly till we monitored (CPD = 20). We also found that while on TCP, late passage MSCs lost their adipogenic potential, the same was maintained on soft gel. Cell surface markers related to MSCs were also unaltered. We demonstrated that this maintenance of stemness was correlated with delay in onset of senescence, which was confirmed by β-gal assay and by differential expression of vimentin, Lamin A and Lamin B. As preparation of poly-acrylamide gel is a simple, well established, and well standardized protocol, we believe that this system of cell expansion will be useful in therapeutic and research applications of hMSCs.One Sentence SummaryhMSCs retain their stemness when expanded in vitro on soft polyacrylamide gel coated with collagen by delaying senescence.Significance StatementFor clinical applications, mesenchymal stem cells (MSCs) are required in large numbers. As MSCs are available only in scarcity in vivo, to fulfill the need, extensive in vitro expansion is unavoidable. However, on expansion, they lose their replicative and multi-lineage differentiation potential and become senescent. A culture system that can maintain MSC stemness on long-term expansion, without compromising the stemness, is need of the hour. In this paper, we identified polyacrylamide (PAA) hydrogel of optimum stiffness that can be used to maintain stemness of MSCs during in vitro long term culture. Large quantity of MSCs thus grown can be used in regenerative medicine, cell therapy, and in treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document