scholarly journals MACC-1 antibody target therapy suppresses growth and migration of non-small cell lung cancer

2017 ◽  
Vol 16 (5) ◽  
pp. 7329-7336 ◽  
Author(s):  
Woda Shi ◽  
Jianxiang Song ◽  
Wencai Wang ◽  
Yajun Zhang ◽  
Shiying Zheng
BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hua Luo ◽  
Yukun Zhang ◽  
Guangmei Qin ◽  
Bing Jiang ◽  
Lili Miao

Abstract Background MCM3AP-AS1 is a recently characterized lncRNA playing an oncogenic role in several cancers. However, its role in lung cancer remains unknown. Here, we aimed to explore the functions of MCM3AP-AS1 in small cell lung cancer (SCLC) and the possible underlying mechanisms. Methods MCM3AP-AS1 and ROCK1 levels in SCLC patients were analyzed by qPCR. RNA pull-down and luciferase assays were performed to analyze the interaction between MCM3AP-AS1 and miR-148a. ROCK1 mRNA and protein levels were detected by qPCR and Western blot, respectively. Cell invasion and migration were analyzed by Transwell assays. Results MCM3AP-AS1 was upregulated in patients with SCLC, and a high MCM3AP-AS1 level was accompanied by a low survival rate. The binding of MCM3AP-AS1 to miR-148a predicted by bioinformatics analysis was verified by RNA pull-down and luciferase assays. However, MCM3AP-AS1 and miR-148a did not affect each other’s expression. ROCK1 was upregulated in SCLC tissues and positively correlated with MCM3AP-AS1. In SCLC cells, MCM3AP-AS1 overexpression increased ROCK1 and promoted cancer cell invasion and migration, while miR-148a overexpression showed the opposite effects and attenuated the effects of MCM3AP-AS1 overexpression on ROCK1 expression and cell behaviors. Conclusions MCM3AP-AS1 sponges miR-148a, thereby increasing SCLC cell invasion and migration via upregulating ROCK1 expression.


2021 ◽  
Vol 49 (5) ◽  
pp. 030006052110165
Author(s):  
Naiwang Tang ◽  
Bin Hu ◽  
Yin Zhang ◽  
Zhiwei Chen ◽  
Ronghuan Yu

Background Small-cell lung cancer (SCLC) accounts for approximately 15% to 20% of all lung cancers, and it is the leading cause of tumor-related deaths globally. This study explored the molecular mechanisms underlying the development of SCLC. Methods The correlations of phosphoinositide-dependent kinase-1 (PDPK1), p-Akt, and Hedgehog expression with patient characteristics were analyzed using SCLC specimens, and their expression was measured in BEAS-2B cells (control) and the SCLC cell lines H82, H69, H446, H146, and H526. Transfection experiments were performed to inhibit or activate gene expression in cells. We then measured the proliferation and migration of H146 cells. Results PDPK1, p-Akt, and Hedgehog expression was significantly higher in SCLC tissues, and their expression was correlated with patient characteristics. p-Akt expression was significantly correlated with Hedgehog expression. In H146 cells, PDPK1 and p-Akt were significantly upregulated. Silencing of PDPK1 or Akt and inhibition of Hedgehog significantly inhibited the proliferation and migration of H146 cells. PDPK1 and Akt affected Hedgehog expression, but Hedgehog did not affect PDPK1 or p-Akt expression. Conclusions The interaction between the PDPK1–Akt pathway and the Hedgehog pathway influences the prognosis, growth, and migration of SCLC.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142596 ◽  
Author(s):  
Weihua Zhan ◽  
Tianyu Han ◽  
Chenfu Zhang ◽  
Caifeng Xie ◽  
Mingxi Gan ◽  
...  

Tumor Biology ◽  
2015 ◽  
Vol 37 (6) ◽  
pp. 7287-7293 ◽  
Author(s):  
Hongcheng Liu ◽  
Xuefei Hu ◽  
Yuming Zhu ◽  
Gening Jiang ◽  
Sheng Chen

Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 362 ◽  
Author(s):  
Shuai Hao ◽  
Shuang Li ◽  
Jing Wang ◽  
Lei Zhao ◽  
Yan Yan ◽  
...  

Phycocyanin, derived from Spirulina platensis, is a type of natural antineoplastic marine protein. It is known that phycocyanin exerts anticancer effects on non-small-cell lung cancer (NSCLC) cells, but its underlying mechanism has not been elucidated. Herein, the antitumor function and regulatory mechanism of phycocyanin were investigated in three NSCLC cell lines for the first time: H358, H1650, and LTEP-a2. Cell phenotype experiments suggested that phycocyanin could suppress the survival rate, proliferation, colony formation, and migration abilities, as well as induce apoptosis of NSCLC cells. Subsequently, transcriptome analysis revealed that receptor-interacting serine/threonine-protein kinase 1 (RIPK1) was significantly down-regulated by phycocyanin in the LTEP-a2 cell, which was further validated by qRT-PCR and Western blot analysis in two other cell lines. Interestingly, similar to phycocyanin-treated assays, siRNA knockdown of RIPK1 expression also resulted in growth and migration inhibition of NSCLC cells. Moreover, the activity of NF-κB signaling was also suppressed after silencing RIPK1 expression, indicating that phycocyanin exerted anti-proliferative and anti-migratory function through down-regulating RIPK1/NF-κB activity in NSCLC cells. This study proposes a mechanism of action for phycocyanin involving both NSCLC apoptosis and down regulation of NSCLC genes.


Sign in / Sign up

Export Citation Format

Share Document