Stro-1 Positive and Stro-1− Negtive Human Mesenchymal Stem Cells Express Different Levels of Immunosuppression.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4964-4964
Author(s):  
Dominique Thierry 9 ◽  
Y. Z. Zhang 1 ◽  
A. Chapel 2 ◽  
M. Benshidoum 3 ◽  
C. Mazurier 4 ◽  
...  

Abstract Mesenchymal stem cells (MSCs), have been shown to elicit immunosuppressive effect on allogeneic lymphocyte response. However, MSCs are heterogeneous and data on the inhibitory abilities of different MSC subsets are lacking. In the present study, we selected Stro-1+ cells from human bone marrow and evaluated the inhibitory capability of this MSC subset in mixed lymphocyte reactions (MLRs) or in mitogen stimulation asssays, in comparison to that of Stro-1− cells. To evaluate the two MSC subsets for immunomodulation in vitro, we added 1,000–30,000 Stro-1+ or Stro-1− cells to MLR at the beginning of the experiment. When comparing the inhibitory effects of the two subsets, PBLs proliferation was significantly more inhibited by Stro-1+MSCs (11.0%–63.7%) than by stro-1−MSCs (35.5%-106%) (P<0.01). Furthermore, as few as 1,000 Stro-1+ MSC could inhibit lymphocyte proliferation more effectively than 10 times more (10,000 cells) Stro-1−cells. As it was observed with the mixed lymphocyte reaction, suppression of the response to the mitogen also occurred in a dose dependent fashion, but to a lesser extent with the Stro-1−cells (25.5%–80.1% vs 7.5%–38.4% in Stro-1+cells) (P<0.05). To investigate whether the difference of suppressive effect that we observed between Stro-1+ and Stro-1− cells, still exist when MSC subsets are separated physically from PBL, we performed MLR in the upper chamber of a transwell and we seeded the lower chamber either with Stro-1+ or Stro-1− cells. The inhibitory effect of Stro-1+ cells was significantly more profound than the one observed when Stro-1− cells were used in the Transwell culture system (p<0.05) (Figure 3), demonstrating that one or several soluble factors was involved in production of different suppressive effects. Cytokine and chemokine genes, IL-10, TGF-β1, SDF-1, SCF and IL-6 expression were evaluated in both MSC subsets by quantitative RT-PCR. Low levels of IL-6, SCF, SDF-1 were observed in Stro-1+, which induced a fold increase around 1 (0,96 ± 0,32; 0,96 ± 0,24; 0,96 ± 0,24), indicating that there is no signifiant difference of these genes expression between the two MSC subsets. However, we observed in Stro-1+ a decreased gene expression for IL-10 (0,24 fold ± 0,59; p <0,05) and for TGF b1 (0,43 fold ± 0,32; p <0,05). This finding suggested that the candidate T-cell inhibitory factors TGF b1, IL-10, which are lower expressed in Stro-1+ cells, are not responsible for the more profound inhibition of immunoreactivity by Stro-1+ cells. We show here that significant differences do exist within these two subsets. Stro-1+ cells inhibit lymphocyte proliferation significantly more profoundly than Stro-1−cells. The difference is in part mediated by soluble factors, but not IL-10 and TGF-β1. These results point to the notion that Stro-1+ cells can elicit more powerful immunosuppressive ability and a pre-selection of Stro-1+MSC for clinical use may be advisable. These findings suggest that pre-selection of MSC before clinical use might produce more effective immunosuppression in different therapeutic applications, especially in clinics for the prevention of graft versus host disease (GVHD).

2016 ◽  
Vol 879 ◽  
pp. 2444-2449 ◽  
Author(s):  
Ekaterina Chudinova ◽  
Maria Surmeneva ◽  
Andrey Koptioug ◽  
Irina V. Savintseva ◽  
Irina Selezneva ◽  
...  

Custom orthopedic and dental implants may be fabricated by additive manufacturing (AM), for example using electron beam melting technology. This study is focused on the modification of the surface of Ti6Al4V alloy coin-like scaffolds fabricated via AM technology (EBM®) by radio frequency (RF) magnetron sputter deposition of hydroxyapatite (HA) coating. The scaffolds with HA coating were characterized by Scanning Electron microscopy, X-ray diffraction. HA coating showed a nanocrystalline structure with the crystallites of an average size of 32±9 nm. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells was studied using biological short-term tests in vitro. In according to in vitro assessment, thin HA coating stimulated the attachment and proliferation of cells. Human mesenchymal stem cells cultured on the HA-coated scaffold also formed mineralized nodules.


2021 ◽  
Vol 95 (2) ◽  
pp. 727-747
Author(s):  
Simone Rothmiller ◽  
Niklas Jäger ◽  
Nicole Meier ◽  
Thimo Meyer ◽  
Adrian Neu ◽  
...  

AbstractWound healing is a complex process, and disturbance of even a single mechanism can result in chronic ulcers developing after exposure to the alkylating agent sulfur mustard (SM). A possible contributor may be SM-induced chronic senescent mesenchymal stem cells (MSCs), unable to fulfil their regenerative role, by persisting over long time periods and creating a proinflammatory microenvironment. Here we show that senescence induction in human bone marrow derived MSCs was time- and concentration-dependent, and chronic senescence could be verified 3 weeks after exposure to between 10 and 40 µM SM. Morphological changes, reduced clonogenic and migration potential, longer scratch closure times, differences in senescence, motility and DNA damage response associated genes as well as increased levels of proinflammatory cytokines were revealed. Selective removal of these cells by senolytic drugs, in which ABT-263 showed initial potential in vitro, opens the possibility for an innovative treatment strategy for chronic wounds, but also tumors and age-related diseases.


Injury ◽  
2006 ◽  
Vol 37 (3) ◽  
pp. S33-S42 ◽  
Author(s):  
Lucy DiSilvio ◽  
Jacqueline Jameson ◽  
Zakareya Gamie ◽  
Peter V. Giannoudis ◽  
Eleftherios Tsiridis

2011 ◽  
Vol 43 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Cornelia Hildebrandt ◽  
Heiko Büth ◽  
Hagen Thielecke

Sign in / Sign up

Export Citation Format

Share Document