scholarly journals Silencing a disintegrin and metalloproteinase‑33 attenuates the proliferation of vascular smooth muscle cells via PI3K/AKT pathway: Implications in the pathogenesis of airway vascular remodeling

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Fang Yan ◽  
Yanyan Hao ◽  
Xinji Gong ◽  
Hu Sun ◽  
Jianbing Ding ◽  
...  
2019 ◽  
Vol 20 (12) ◽  
pp. 2902 ◽  
Author(s):  
Omana P. Mathew ◽  
Kasturi Ranganna ◽  
Joseph Mathew ◽  
Meiling Zhu ◽  
Zivar Yousefipour ◽  
...  

Vascular remodeling is a characteristic feature of cardiovascular diseases. Altered cellular processes of vascular smooth muscle cells (VSMCs) is a crucial component in vascular remodeling. Histone deacetylase inhibitor (HDACI), butyrate, arrests VSMC proliferation and promotes cell growth. The objective of the study is to determine the mechanism of butyrate-induced VSMC growth. Using proliferating VSMCs exposed to 5 mM butyrate, immunoblotting studies are performed to determine whether PI3K/Akt pathway that regulates different cellular effects is a target of butyrate-induced VSMC growth. Butyrate inhibits phosphorylation-dependent activation of PI3K, PDK1, and Akt, eliciting differential effects on downstream targets of Akt. Along with previously reported Ser9 phosphorylation-mediated GSK3 inactivation leading to stability, increased expression and accumulation of cyclin D1, and epigenetic histone modifications, inactivation of Akt by butyrate results in: transcriptional activation of FOXO1 and FOXO3 promoting G1 arrest through p21Cip1/Waf1 and p15INK4B upregulation; inactivation of mTOR inhibiting activation of its targets p70S6K and 4E-BP1 impeding protein synthesis; inhibition of caspase 3 cleavage and downregulation of PARP preventing apoptosis. Our findings imply butyrate abrogates Akt activation, causing differential effects on Akt targets promoting convergence of cross-talk between their complimentary actions leading to VSMC growth by arresting proliferation and inhibiting apoptosis through its effect on dual targets, HDAC activity and PI3K/Akt pathway network.


Author(s):  
Yeling Ma ◽  
Xin Yu ◽  
Lanmei Zhang ◽  
Juan Liu ◽  
Xuan Shao ◽  
...  

Abstract Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal–fetal interface and meet the demands of the growing fetus. Along this process, the dynamic change and the fate of spiral artery vascular smooth muscle cells (SPA–VSMCs) have long been debatable. In the present study, we analyzed the cell features of SPA–VSMCs at different stages of vascular remodeling in human early pregnancy, and we demonstrated the progressively morphological change of SPA–VSMCs at un-remodeled (Un-Rem), remodeling, and fully remodeled (Fully-Rem) stages, indicating the extravillous trophoblast (EVT)-independent and EVT-dependent phases of SPA–VSMC dedifferentiation. In vitro experiments in VSMC cell line revealed the efficient roles of decidual stromal cells, decidual natural killer cells (dNK), decidual macrophages, and EVTs in inducing VSMCs dedifferentiation. Importantly, the potential transformation of VSMC toward CD56+ dNKs was displayed by immunofluorescence-DNA in-situ hybridization-proximity ligation and chromatin immunoprecipitation assays for H3K4dime modification in the myosin heavy chain 11 (MYH11) promoter region. The findings clearly illustrate a cascade regulation of the progressive dedifferentiation of SPA–VSMCs by multiple cell types in uterine decidual niche and provide new evidences to reveal the destination of SPA–VSMCs during vascular remodeling.


2011 ◽  
Vol 24 (10) ◽  
pp. 1149-1155 ◽  
Author(s):  
Hirofumi Hitomi ◽  
Kumiko Kaifu ◽  
Yoshiko Fujita ◽  
Tadashi Sofue ◽  
Daisuke Nakano ◽  
...  

2004 ◽  
Vol 287 (3) ◽  
pp. C807-C813 ◽  
Author(s):  
Mizuo Mifune ◽  
Haruhiko Ohtsu ◽  
Hiroyuki Suzuki ◽  
Gerald D. Frank ◽  
Tadashi Inagami ◽  
...  

Epidermal growth factor (EGF) family ligands have been implicated in cardiovascular diseases because of their enhanced expression in vascular lesions and their promoting effects on growth and migration of vascular smooth muscle cells (VSMCs). Betacellulin (BTC), a novel EGF family ligand, has been shown to be expressed in atherosclerotic lesions and to be a potent growth factor of VSMCs. However, the molecular mechanisms downstream of BTC involved in mediating vascular remodeling remain largely unknown. Therefore, the aim of this study was to examine the effects of BTC on signal transduction, growth, and migration in VSMCs. We found that BTC stimulated phosphorylation of EGF receptor (EGFR) at Tyr1068, which was completely blocked by an EGFR kinase inhibitor, AG-1478. BTC also phosphorylated ErbB2 at Tyr877, Tyr1112, and Tyr1248 and induced association of ErbB2 with EGFR, suggesting their heterodimerization in VSMCs. In postreceptor signal transduction, BTC stimulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2, Akt, and p38 mitogen-activated protein kinase (MAPK). Moreover, BTC stimulated proliferation and migration of VSMCs. ERK and Akt inhibitors suppressed migration markedly and proliferation partially, whereas the p38 inhibitor suppressed migration partially but not proliferation. In addition, we found the presence of endogenous BTC in conditioned medium of VSMCs and an increase of BTC on angiotensin II stimulation. In summary, BTC promotes growth and migration of VSMCs through activation of EGFR, ErbB2, and downstream serine/threonine kinases. Together with the expression and processing of endogenous BTC in VSMCs, our results suggest a critical involvement of BTC in vascular remodeling.


Author(s):  
Xuran Chu ◽  
Negah Ahmadvand ◽  
Jin-San Zhang ◽  
Werner Seeger ◽  
Saverio Bellusci ◽  
...  

Vascular remodeling is a prominent feature of pulmonary hypertension. This process involves increased muscularization of already muscularized vessels as well as neo-muscularization of non-muscularized vessels. The cell-of-origin of the newly formed vascular smooth muscle cells has been a subject of intense debate in recent years. Identifying these cells may have important clinical implications since it opens the door for attempts to therapeutically target the progenitor cells and/or reverse the differentiation of their progeny. In this context, the dominant model is that these cells derive from pre-existing smooth muscle cells that are activated in response to injury. In this mini review, we present the evidence that is in favor of this model and, at the same time, highlight other studies indicating that there are alternative cellular sources of vascular smooth muscle cells in pulmonary vascular remodeling.


Sign in / Sign up

Export Citation Format

Share Document