scholarly journals MicroRNA-183 is involved in cell proliferation, survival and poor prognosis in pancreatic ductal adenocarcinoma by regulating Bmi-1

2014 ◽  
Vol 32 (4) ◽  
pp. 1734-1740 ◽  
Author(s):  
LIANG ZHOU ◽  
WEI-GUO ZHANG ◽  
DE-SHENG WANG ◽  
KAI-SHAN TAO ◽  
WEN-JIE SONG ◽  
...  
2021 ◽  
Author(s):  
Hao Yu ◽  
Xiaoping Mei ◽  
Xueming Zhang ◽  
Neng Qian ◽  
Qingjiang Yu ◽  
...  

Abstract Objective: Pancreatic ductal adenocarcinoma (PDAC) serves as a prevailing tumor type with high mortality and poor prognosis. The study aims to explore the mechanism of gemcitabine resistance in PDAC patients. Methods: Immunohistochemistry(IHC)was used to analyze the expression of SLC39A1 in PDAC samples. PDAC cells were culture and transfected with siSLC39A1 and siNC, respectively. Cell proliferation analysis was performed using CCK-8 assay. And qPCR and Western blotting was used to analysis the expression level of SLC39A1 and related signal molecular in cells. Results: IHC results demonstrated that the SLC39A1 expression was significantly up-regulated in the gemcitabine-resistant PDAC samples compared with gemcitabine-sensitive PDAC samples. The treatment of gemcitabine dose-dependently inhibited the viability of the PDAC cells. Meanwhile, the mRNA and protein expression of SLC39A1 were elevated in the gemcitabine-resistant PDAC. The treatment of gemcitabine remarkably decreased viability of PDACs, in which SLC39A1 depletion could reverse this effect. SLC39A1 knockdown could reverse the gemcitabine-induced phosphorylation of AMPK enhanced and gemcitabine-inhibited S6K expression. Conclusion: SLC39A1 contributed to gemcitabine resistance of PDAC by activating AMPK signaling.


2017 ◽  
Vol 8 (16) ◽  
pp. 3154-3165 ◽  
Author(s):  
Chao-qin Shen ◽  
Ting-Ting Yan ◽  
Wei Liu ◽  
Xiao-qiang Zhu ◽  
Xiang-long Tian ◽  
...  

2017 ◽  
Vol 313 (5) ◽  
pp. G524-G536 ◽  
Author(s):  
Sandrina Maertin ◽  
Jason M. Elperin ◽  
Ethan Lotshaw ◽  
Matthias Sendler ◽  
Steven D. Speakman ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) displays extensive and poorly vascularized desmoplastic stromal reaction, and therefore, pancreatic cancer (PaCa) cells are confronted with nutrient deprivation and hypoxia. Here, we investigate the roles of autophagy and metabolism in PaCa cell adaptation to environmental stresses, amino acid (AA) depletion, and hypoxia. It is known that in healthy cells, basal autophagy is at a low level, but it is greatly activated by environmental stresses. By contrast, we find that in PaCa cells, basal autophagic activity is relatively high, but AA depletion and hypoxia activate autophagy only weakly or not at all, due to their failure to inhibit mechanistic target of rapamycin. Basal, but not stress-induced, autophagy is necessary for PaCa cell proliferation, and AA supply is even more critical to maintain PaCa cell growth. To gain insight into the underlying mechanisms, we analyzed the effects of autophagy inhibition and AA depletion on PaCa cell metabolism. PaCa cells display mixed oxidative/glycolytic metabolism, with oxidative phosphorylation (OXPHOS) predominant. Both autophagy inhibition and AA depletion dramatically decreased OXPHOS; furthermore, pharmacologic inhibitors of OXPHOS suppressed PaCa cell proliferation. The data indicate that the maintenance of OXPHOS is a key mechanism through which autophagy and AA supply support PaCa cell growth. We find that the expression of oncogenic activation mutation in GTPase Kras markedly promotes basal autophagy and stimulates OXPHOS through an autophagy-dependent mechanism. The results suggest that approaches aimed to suppress OXPHOS, particularly through limiting AA supply, could be beneficial in treating PDAC. NEW & NOTEWORTHY Cancer cells in the highly desmoplastic pancreatic ductal adenocarcinoma confront nutrient [i.e., amino acids (AA)] deprivation and hypoxia, but how pancreatic cancer (PaCa) cells adapt to these conditions is poorly understood. This study provides evidence that the maintenance of mitochondrial function, in particular, oxidative phosphorylation (OXPHOS), is a key mechanism that supports PaCa cell growth, both in normal conditions and under the environmental stresses. OXPHOS in PaCa cells critically depends on autophagy and AA supply. Furthermore, the oncogenic activation mutation in GTPase Kras upregulates OXPHOS through an autophagy-dependent mechanism.


Cancer ◽  
2006 ◽  
Vol 107 (2) ◽  
pp. 251-257 ◽  
Author(s):  
Norihiro Sato ◽  
Noriyoshi Fukushima ◽  
Hiroyuki Matsubayashi ◽  
Christine A. Iacobuzio-Donahue ◽  
Charles J. Yeo ◽  
...  

Tumor Biology ◽  
2015 ◽  
Vol 36 (12) ◽  
pp. 9189-9199 ◽  
Author(s):  
Chen Gong ◽  
Yixin Zhang ◽  
Yinji Chen ◽  
Haifeng Zhang ◽  
Xiaorong Liu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Chen ◽  
Cui-Cui Zhao ◽  
Fei-Ran Chen ◽  
Guo-Wei Feng ◽  
Fei Luo ◽  
...  

Background. Pancreatic cancer is a malignant tumor of the digestive tract, which is difficult to diagnose and treat due to bad early diagnosis. We aimed to explore the role of kinesin superfamily 4A (KIF4A) in pancreatic ductal adenocarcinoma (PDAC). Methods. We first used the bioinformatic website to screen the data of pancreatic cancer in TCGA, and KIF4A protein was detected among the 86 specimens of patients in our hospital combined with clinic-pathological characteristics and survival analysis. KIF4A loss-expression cell lines were established by RNA interference (RNAi). In addition, we performed in vitro cell assays to detect the changes in cell proliferation, migration, and invasion. The proteins involved in the proliferation and metastasis of cancer cells were also detected by western blot. The above results could be proved in vivo. Further, the correlation between KIF4A and CDC5L was analyzed by TCGA and IHC data. Results. We first found a high expression of KIF4A in pancreatic cancer, suggesting a role of KIF4A in the development of pancreatic cancer. KIF4A was found to be differentially expressed ( P < 0.05 ) among the 86 specimens of patients in our hospital and was significantly associated with PDAC TNM stages and tumor size. High KIF4A expression also significantly worsened overall survival (OS) and disease-free survival rate (DFS) ( P < 0.05 , respectively). In addition, cell proliferation, migration, and invasion were inhibited by the KIF4A-shRNA group compared with the control ( P < 0.05 , respectively). In the end, knockdown of KIF4A could inhibit tumor development and metastasis in vivo. Further, the positive correlation between KIF4A and CDC5L existed, and KIF4A might promote pancreatic cancer proliferation by affecting CDC5L expression. Conclusion. In conclusion, the high expression level of KIF4A in PDAC was closely related to poor clinical and pathological status, lymphatic metastasis, and vascular invasion. KIF4A might be involved in promoting the development of PDAC in vitro and in vivo, which might be a new therapeutic target of PDAC.


Pancreatology ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 443-448 ◽  
Author(s):  
Yuki Hashimoto ◽  
Mitsuaki Ishida ◽  
Hironori Ryota ◽  
Tomohisa Yamamoto ◽  
Hisashi Kosaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document