scholarly journals The role of deformed wing virus in the initial collapse of varroa infested honey bee colonies in the UK

2013 ◽  
Vol 52 (5) ◽  
pp. 251-258 ◽  
Author(s):  
Stephen J Martin ◽  
Brenda V Ball ◽  
Norman L Carreck
Author(s):  
J. L. Kevill ◽  
K. C. Stainton ◽  
D. C. Schroeder ◽  
S. J. Martin

AbstractDeformed wing virus (DWV) has been linked to the global decline of honey bees. DWV exists as three master variants (DWV-A, DWV-B, and DWV-C), each with differing outcomes for the honey bee host. Research in the USA showed a shift from DWV-A to DWV-B between 2010 to 2016 in honey bee colonies. Likewise, in the UK, a small study in 2007 found only DWV-A, whereas in 2016, DWV-B was the most prevalent variant. This suggests a shift from DWV-A to DWV-B might have occurred in the UK between 2007 and 2016. To investigate this further, data from samples collected in 2009/10 (n = 46) were compared to existing data from 2016 (n = 42). These samples also allowed a comparison of DWV variants between Varroa-untreated (feral) and Varroa-treated (managed) colonies. The results revealed that, in the UK, DWV-A was far more prevalent in 2009/10 (87%) than in 2016 (43%). In contrast, DWV-B was less prevalent in 2009/10 (76%) than in 2016 (93%). Regardless if colonies had been treated for Varroa (managed) or not (feral), the same trend from DWV-A to DWV-B occurred. Overall, the results reveal a decrease in DWV-A and an increase in DWV-B in UK colonies.


2014 ◽  
Vol 64 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Predrag Simeunović ◽  
Jevrosima Stevanović ◽  
Dejan Vidanović ◽  
Jakov Nišavić ◽  
Dejan Radović ◽  
...  

Abstract In this study 55 honey bee colonies from different Serbian regions were monitored for the presence of Deformed Wing Virus (DWV) and Acute Bee Paralysis Virus (ABPV) using TaqMan-based real-time RT-PCR assay. The results revealed the presence of DWV in each sampling location, and ABPV in 10 out of 11 apiaries. High frequency of DWV (76.4%) and ABPV (61.8%) positive samples in asymptomatic colonies can be the consequence of inefficient and postponed Varroa treatment concerning the role of this mite in the transmission and activation of honey bee viruses. The real-time RTPCR technique described in this paper is proved to be the most reliable method for this kind of investigation.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 16
Author(s):  
Katie F. Daughenbaugh ◽  
Alex J. McMenamin ◽  
Laura M. Brutscher ◽  
Fenali Parekh ◽  
Michelle L. Flenniken

Honey bee colony losses are influenced by multiple abiotic and biotic factors, including viruses. To investigate the effects of RNA viruses on honey bees, we infected bees with a model virus (Sindbis-GFP) in the presence or absence of double-stranded RNA (dsRNA). In honey bees, dsRNA is the substrate for sequence-specific RNA interference (RNAi)-mediated antiviral defense and is a trigger of sequence-independent\antiviral responses. Transcriptome sequencing identified more than 200 differentially expressed genes, including genes in the RNAi, Toll, Imd, JAK-STAT, and heat shock response pathways, and many uncharacterized genes. To confirm the virus limiting role of two genes (i.e., dicer and mf116383) in honey bees, we utilized RNAi to reduce their expression in vivo and determined that the virus abundance increased. To evaluate the role of the heat shock stress response in antiviral defense, bees were heat stressed post-virus infection and the virus abundance and gene expression were assessed. Heat-stressed bees had reduced virus levels and a greater expression of several heat shock protein encoding genes (hsps) compared to the controls. To determine if these genes are universally associated with antiviral defense, bees were infected with another model virus, Flock House virus (FHV), or deformed wing virus and the gene expression was assessed. The expression of dicer was greater in bees infected with either FHV or Sindbis-GFP compared to the mock-infected bees, but not in the deformed wing virus-infected bees. To further investigate honey bee antiviral defense mechanisms and elucidate the function of key genes (dicer, ago-2, mf116383, and hsps) at the cellular level, primary honey bee larval hemocytes were transfected with dsRNA or infected with the Lake Sinai virus 2 (LSV2). These studies indicate that mf116383 and hsps mediate dsRNA detection and that MF116383 is involved in limiting LSV2 infection. Together, these results further our understanding of honey bee antiviral defense, particularly dsRNA-mediated antiviral responses, at both the individual bee and cellular levels.


2010 ◽  
Vol 49 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Norman L. Carreck ◽  
Brenda V. Ball ◽  
Stephen J. Martin

2018 ◽  
Author(s):  
Tim Regan ◽  
Mark W. Barnett ◽  
Dominik R. Laetsch ◽  
Stephen J. Bush ◽  
David Wragg ◽  
...  

AbstractThe European honey bee (Apis mellifera) plays a major role in pollination and food production, but is under threat from emerging pathogens and agro-environmental insults. As with other organisms, honey bee health is a complex product of environment, host genetics and associated microbes (commensal, opportunistic and pathogenic). Improved understanding of bee genetics and their molecular ecology can help manage modern challenges to bee health and production. Sampling bee and cobiont genomes, we characterised the metagenome of 19 honey bee colonies across Britain. Low heterozygosity was observed in bees from many Scottish colonies, sharing high similarity to the native dark bee, A. mellifera mellifera. Apiaries exhibited high diversity in the composition and relative abundance of individual microbiome taxa. Most non-bee sequences derived from known honey bee commensal bacteria or known pathogens, e.g. Lotmaria passim (Trypanosomatidae), and Nosema spp. (Microsporidia). However, DNA was also detected from numerous additional bacterial, plant (food source), protozoan and metazoan organisms. To classify sequences from cobionts lacking genomic information, we developed a novel network analysis approach clustering orphan contigs, allowing the identification of a pathogenic gregarine. Our analyses demonstrate the power of high-throughput, directed metagenomics in agroecosystems identifying potential threats to honey bees present in their microbiota.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5077 ◽  
Author(s):  
Rositsa Shumkova ◽  
Boyko Neov ◽  
Daniela Sirakova ◽  
Ani Georgieva ◽  
Dimitar Gadjev ◽  
...  

Honey bee colonies suffer from various pathogens, including honey bee viruses. About 24 viruses have been reported so far. However, six of them are considered to cause severe infection which inflicts heavy losses on beekeeping. The aim of this study was to investigate incidence of six honey bee viruses: deformed wing virus (DWV), acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV), sacbrood virus (SBV), kashmir bee virus (KBV), and black queen cell virus (BQCV) by a reverse transcription polymerase chain reaction (RT-PCR). A total of 250 adult honey bee samples were obtained from 50 colonies from eight apiaries situated in three different parts of the country (South, North and West Bulgaria). The results showed the highest prevalence of DWV followed by SBV and ABPV, and one case of BQCV. A comparison with homology sequences available in GenBank was performed by phylogenetic analysis, and phylogenetic relationships were discussed in the context of newly described genotypes in the uninvestigated South Eastern region of Europe. In conclusion, the present study has been the first to provide sequencing data and phylogenetics analyses of some honey bee viruses in Bulgaria.


Parasitology ◽  
2015 ◽  
Vol 142 (11) ◽  
pp. 1364-1374 ◽  
Author(s):  
WENJUN PENG ◽  
JILIAN LI ◽  
YAZHOU ZHAO ◽  
YANPING CHEN ◽  
ZHIJIANG ZENG

SUMMARYThe Chinese black honey bee is a distinct honey bee subspecies distributed in the Xinjiang, Heilongjiang and Jilin Provinces of China. We conducted a study to investigate the genetic origin and the parasite/pathogen profile on Chinese black honeybees. The phylogenetic analysis indicated that Chinese black honeybees were two distinct groups: one group of bees formed a distinct clade that was most similar to Apis mellifera mellifera and the other group was a hybrid of the subspecies, Apis mellifera carnica, Apis mellifera anatolica and Apis mellifera caucasica. This suggests that the beekeeping practices might have promoted gene flow between different subspecies. Screening for pathogens and parasites showed that Varroa destructor and viruses were detected at low prevalence in Chinese black honeybees, compared with Italian bees. Further, a population of pure breeding black honeybees, A. m. mellifera, displayed a high degree of resistance to Varroa. No Varroa mites or Deformed wing virus could be detected in any examined bee colonies. This finding suggests that a population of pure breeding Chinese black honeybees possess some natural resistance to Varroa and indicated the need or importance for the conservation of the black honeybees in China.


2015 ◽  
Vol 59 (1) ◽  
pp. 59-73 ◽  
Author(s):  
Antoine Clermont ◽  
Matias Pasquali ◽  
Michael Eickermann ◽  
François Kraus ◽  
Lucien Hoffmann ◽  
...  

Abstract Twenty managed honey bee colonies, split between 5 apiaries with 4 hives each, were monitored between the summer of 2011 and spring of 2013. Living bees were sampled in July 2011, July 2012, and August 2012. Twenty-five, medium-aged bees, free of varroa mites, were pooled per colony and date, to form one sample. Unlike in France and Belgium, Chronic Bee Paralysis Virus (CBPV) has not been found in Luxembourg. Slow Bee Paralysis Virus (SBPV) and Israeli Acute Paralysis Virus (IAPV) levels were below detection limits. Traces of Kashmir Bee Virus (KBV) were amplified. Black Queen Cell Virus (BQCV), Varroa destructor Virus-1 (VDV-1), and SacBrood Virus (SBV) were detected in all samples and are reported from Luxembourg for the first time. Varroa destructor Macula- Like Virus (VdMLV), Deformed Wing Virus (DWV), and Acute Bee Paralysis Virus (ABPV) were detected at all locations, and in most but not all samples. There was a significant increase in VDV-1 and DWV levels within the observation period. A principal component analysis was unable to separate the bees of colonies that survived the following winter from bees that died, based on their virus contents in summer. The number of dead varroa mites found below colonies was elevated in colonies that died in the following winter. Significant positive relationships were found between the log-transformed virus levels of the bees and the log-transformed number of mites found below the colonies per week, for VDV-1 and DWV. Sacbrood virus levels were independent of varroa levels, suggesting a neutral or competitive relationship between this virus and varroa.


2021 ◽  
Vol 9 (4) ◽  
pp. 871
Author(s):  
Christopher Dosch ◽  
Anja Manigk ◽  
Tabea Streicher ◽  
Anja Tehel ◽  
Robert J. Paxton ◽  
...  

Adult honey bees host a remarkably consistent gut microbial community that is thought to benefit host health and provide protection against parasites and pathogens. Currently, however, we lack experimental evidence for the causal role of the gut microbiota in protecting the Western honey bees (Apis mellifera) against their viral pathogens. Here we set out to fill this knowledge gap by investigating how the gut microbiota modulates the virulence of a major honey bee viral pathogen, deformed wing virus (DWV). We found that, upon oral virus exposure, honey bee survival was significantly increased in bees with an experimentally established normal gut microbiota compared to control bees with a perturbed (dysbiotic) gut microbiota. Interestingly, viral titers were similar in bees with normal gut microbiota and dysbiotic bees, pointing to higher viral tolerance in bees with normal gut microbiota. Taken together, our results provide evidence for a positive role of the gut microbiota for honey bee fitness upon viral infection. We hypothesize that environmental stressors altering honey bee gut microbiota composition, e.g., antibiotics in beekeeping or pesticides in modern agriculture, could interact synergistically with pathogens, leading to negative effects on honey bee health and the epidemiology and impact of their viruses.


Sign in / Sign up

Export Citation Format

Share Document