scholarly journals Haplotype-level DNA metabarcoding from freshwater macroinvertebrate community samples

2021 ◽  
Vol 4 ◽  
Author(s):  
Joeselle Serrana ◽  
Kozo Watanabe

DNA metabarcoding is a robust method for environmental impact assessments of freshwater ecosystems that enables the simultaneous multi-species identification of complex mixed community samples from different origins using extracellular and total genomic DNA. The development and evaluation of DNA metabarcoding protocols for haplotype level resolution require attention, specifically for basic population genetic applications, i.e., analysis to allow genetic diversity estimations and dispersal abilities of the species present in the bulk community samples. Various literature has proposed using DNA metabarcoding for population genetics, and few studies have provided preliminary applications and proof of concepts that always refer to particular taxa. However, further exploration and assessment of the laboratory and bioinformatics strategies are required to unlock the potential of metabarcoding-based population-level ecological assessments. Here, we assessed the ability to infer haplotype information of freshwater macroinvertebrate species from DNA metabarcoding community sequence. Using mock samples with known Sanger-sequenced haplotypes, we also assayed the effects of PCR cycle for the detection and reduction of spurious haplotypes obtained from DNA metabarcoding. We tested our haplotyping strategy on a mock sample containing 20 specimens from four species with known haplotypes based on the 658-bp Folmer region of the mitochondrial cytochrome c oxidase (mtCOI) gene. The read processing and denoising-step resulted in 14 zero-radius operational taxonomic units (ZOTUs) of 421-bp length, with 12 ZOTUs having 100% match with 12 of the mock haplotype sequences. The remaining eight haplotypes that were not detected from the DNA metabarcoding dataset were all the A. decemseta samples (0.01, 0.05, 0.10 ng/μL DNA template concentrations), two E. bulba (0.01 and 0.05 ng/μL), E. latifolium (0.01 ng/μL), and two K. tibialis (0.01 and 0.10 ng/μL). Given that most of the undetected samples had low concentrations, we report the influence of initial DNA template concentration on the amplification from a mock community sample. Our observation is in accordance with previous studies that reported that samples or taxa with low DNA template concentrations have lower detection probability. Accordingly, abundant taxa or samples with high biomass tend to have higher detection probabilities than those rare, smaller or have low biomass from mixed-community samples. The difference in biomass affects haplotypes' detection since most of the large specimens would be retained after read processing. Hence, these factors need to be addressed when metabarcoding-based haplotyping is to be used to infer abundance-based analysis for population genetics applications. The phylogenetic-based analysis (Fig. 1) revealed that the two ZOTUs without taxonomic matches clustered with one of the species from the mock sample. This supports our observation that only the samples with low concentration were unrepresented from the DNA metabarcoding data. Although we still reported false positive detections because two of the 14 ZOTUs failed to have a 100% match with the mock reference sequences, we could at least identify them as A. decemseta sequences based on the phylogenetic approach. Quality passing reads relatively increased with increasing cycle number, and the relative abundance of each ZOTUs was consistent for each cycle number. This suggests that increasing the cycle number, from 24 to 64, did not affect the relative abundance of quality passing filter reads. Our study demonstrated that DNA metabarcoding data could be used to infer intraspecific variability, showing promise for possible applications in population-based genetic studies. As DNA metabarcoding becomes more established and laboratory protocols and bioinformatics pipelines are continuously being developed, our proof of concept study demonstrated that the method could be used to infer intraspecific variability, showing promise for possible applications on population-based genetic studies.

Author(s):  
Joeselle Serrana ◽  
Kozo Watanabe

The development and evaluation of DNA metabarcoding protocols for haplotype-level resolution require attention, specifically for population genetic analysis, i.e., parallel estimation of genetic diversity and dispersal patterns among multiple species present in a bulk sample. Further exploration and assessment of the laboratory and bioinformatics strategies are warranted to unlock the potential of metabarcoding-inferred population genetic analysis. Here, we assessed the inference of freshwater macroinvertebrate haplotypes from DNA metabarcoding data using mock samples with known Sanger-sequenced haplotypes. We also examined the influence of different DNA template concentrations and PCR cycles on detecting true haplotypes and the reduction of spurious haplotypes obtained from DNA metabarcoding. We tested our haplotyping strategy on a mock sample containing 20 specimens from four species with known haplotypes based on the 658-bp Folmer region of the mitochondrial cytochrome c oxidase gene. The read processing and denoising step resulted in 14 zero-radius operational taxonomic units (ZOTUs) of 421-bp length, with 12 ZOTUs having 100% match with 12 of the Sanger haplotype sequences. Quality passing reads relatively increased with increasing PCR cycles, and the relative abundance of each ZOTUs was consistent for each cycle number. This suggests that increasing the cycle number from 24 to 64 did not affect the relative abundance of quality passing filter reads of each ZOTUs. Our study demonstrated the ability of DNA metabarcoding to infer intraspecific variability while highlighting the challenges that need to be addressed before its possible applications to population genetic studies.


2021 ◽  
Author(s):  
Joeselle M Serrana ◽  
Kozo Watanabe

The development and evaluation of DNA metabarcoding protocols for haplotype-level resolution require attention, specifically for population genetic analysis, i.e., parallel estimation of genetic diversity and dispersal patterns among multiple species present in a bulk sample. Further exploration and assessment of the laboratory and bioinformatics strategies are warranted to unlock the potential of metabarcoding-inferred population genetic analysis. Here, we assessed the inference of freshwater macroinvertebrate haplotypes from DNA metabarcoding data using mock samples with known Sanger-sequenced haplotypes. We also examined the influence of different DNA template concentrations and PCR cycles on detecting true haplotypes and the reduction of spurious haplotypes obtained from DNA metabarcoding. We tested our haplotyping strategy on a mock sample containing 20 specimens from four species with known haplotypes based on the 658-bp Folmer region of the mitochondrial cytochrome c oxidase gene. The read processing and denoising step resulted in 14 zero-radius operational taxonomic units (ZOTUs) of 421-bp length, with 12 ZOTUs having 100% match with 12 of the Sanger haplotype sequences. Quality passing reads relatively increased with increasing PCR cycles, and the relative abundance of each ZOTUs was consistent for each cycle number. This suggests that increasing the cycle number from 24 to 64 did not affect the relative abundance of quality passing filter reads of each ZOTUs. Our study demonstrated the ability of DNA metabarcoding to infer intraspecific variability while highlighting the challenges that need to be addressed before its possible applications to population genetic studies.


2015 ◽  
Author(s):  
Rodney J. Dyer

AbstractFor a scientific discipline to be interdisciplinary it must satisfy two conditions; it must consist of contributions from at least two existing disciplines and it must be able to provide insights, through this interaction, that neither progenitor discipline could address. In this paper, I examine the complete body of peer-reviewed literature self-identified as landscape genetics using the statistical approaches of text mining and natural language processing. The goal here is to quantify the kinds of questions being addressed in landscape genetic studies, the ways in which questions are evaluated mechanistically, and how they are differentiated from the progenitor disciplines of landscape ecology and population genetics. I then circumscribe the main factions within published landscape genetic papers examining the extent to which emergent questions are being addressed and highlighting a deep bifurcation between existing individual- and population-based approaches. I close by providing some suggestions on where theoretical and analytical work is needed if landscape genetics is to serve as a real bridge connecting evolution and ecology sensu lato.


2021 ◽  
Author(s):  
Eran Elhaik

Principal Component Analysis (PCA) is a multivariate analysis that allows reduction of the complexity of datasets while preserving data's covariance and visualizing the information on colorful scatterplots, ideally with only a minimal loss of information. PCA applications are extensively used as the foremost analyses in population genetics and related fields (e.g., animal and plant or medical genetics), implemented in well-cited packages like EIGENSOFT and PLINK. PCA outcomes are used to shape study design, identify and characterize individuals and populations, and draw historical and ethnobiological conclusions on origins, evolution, whereabouts, and relatedness. The replicability crisis in science has prompted us to evaluate whether PCA results are reliable, robust, and replicable. We employed an intuitive color-based model alongside human population data for eleven common test cases. We demonstrate that PCA results are artifacts of the data and that they can be easily manipulated to generate desired outcomes. PCA results may not be reliable, robust, or replicable as the field assumes. Our findings raise concerns on the validity of results reported in the literature of population genetics and related fields that place a disproportionate reliance upon PCA outcomes and the insights derived from them. We conclude that PCA may have a biasing role in genetic investigations. An alternative mixed-admixture population genetic model is discussed.


2013 ◽  
Vol 280 (1772) ◽  
pp. 20132400 ◽  
Author(s):  
M. H. D. Larmuseau ◽  
J. Vanoverbeke ◽  
A. Van Geystelen ◽  
G. Defraene ◽  
N. Vanderheyden ◽  
...  

Recent evidence suggests that seeking out extra-pair paternity (EPP) can be a viable alternative reproductive strategy for both males and females in many pair-bonded species, including humans. Accurate data on EPP rates in humans, however, are scant and mostly restricted to extant populations. Here, we provide the first large-scale, unbiased genetic study of historical EPP rates in a Western European human population based on combining Y-chromosomal data to infer genetic patrilineages with genealogical and surname data, which reflect known historical presumed paternity. Using two independent methods, we estimate that over the last few centuries, EPP rates in Flanders (Belgium) were only around 1–2% per generation. This figure is substantially lower than the 8–30% per generation reported in some behavioural studies on historical EPP rates, but comparable with the rates reported by other genetic studies of contemporary Western European populations. These results suggest that human EPP rates have not changed substantially during the last 400 years in Flanders and imply that legal genealogies rarely differ from the biological ones. This result has significant implications for a diverse set of fields, including human population genetics, historical demography, forensic science and human sociobiology.


2021 ◽  
Author(s):  
Weihan Jia ◽  
Kathleen Stoof-Leichsenring ◽  
Sisi Liu ◽  
Kai Li ◽  
Sichao Huang ◽  
...  

<p>Lake sedimentary DNA (<em>sed</em>DNA) is an established tool to trace past changes in vegetation composition and plant diversity. However, little is known about the relationships between sedimentary plant DNA and modern vegetational and environmental conditions. In this study, we investigate i) the relationships between the preservation of sedimentary plant DNA and environmental variables, ii) the modern analogue of ancient plant DNA assemblages archived in lake sediments, and iii) the usability of sedimentary plant DNA for characterization of terrestrial and aquatic plant composition and diversity based on a large dataset of PCR-amplified plant DNA data retrieved from 259 lake surface sediments from the Tibetan Plateau and Siberia. Our results indicate the following: i) Lake-water electrical conductivity and pH are the most important variables for the preservation of plant DNA in lake sediments. We expect the best preservation conditions for sedimentary plant DNA in small deep lakes characterized by high water conductivities (≥100 μS cm<sup>-1</sup>) and neutral to slightly alkaline pH conditions (7–9). ii) Plant DNA metabarcoding is promising for palaeovegetation reconstruction in high mountain regions, where shifts in vegetation are solely captured by the <em>sed</em>DNA-based analogue matching and fossil pollen generally has poor modern analogues. However, the biases in the representation of some taxa could lead to poor analogue conditions. iii) Plant DNA metabarcoding is a reliable proxy to reflect modern vegetation types and climate characteristics at a sub-continental scale. However, the resolution of the <em>trn</em>L P6 loop marker, the incompleteness of the reference library, and the extent of <em>sed</em>DNA preservation are still the main limitations of this method. iv) Plant DNA metabarcoding is a suitable proxy to recover modern aquatic plant diversity, which is mostly affected by July temperature and lake-water conductivity. Ongoing warming might decrease macrophyte richness in the Tibetan Plateau and Siberia, and ultimately threaten the health of these important freshwater ecosystems. To conclude, sedimentary plant DNA presents a high correlation with modern vegetation and may therefore be an important proxy for reconstruction of past vegetation.</p>


2020 ◽  
Vol 6 (4) ◽  
pp. 372
Author(s):  
Sara Franco Ortega ◽  
Ilario Ferrocino ◽  
Ian Adams ◽  
Simone Silvestri ◽  
Davide Spadaro ◽  
...  

The airborne mycobiota has been understudied in comparison with the mycobiota present in other agricultural environments. Traditional, culture-based methods allow the study of a small fraction of the organisms present in the atmosphere, thus missing important information. In this study, the aerial mycobiota in a rice paddy has been examined during the cropping season (from June to September 2016) using qPCRs for two important rice pathogens (Pyricularia oryzae and Bipolaris oryzae) and by using DNA metabarcoding of the fungal ITS region. The metabarcoding results demonstrated a higher alpha diversity (Shannon–Wiener diversity index H′ and total number of observed species) at the beginning of the trial (June), suggesting a higher level of community complexity, compared with the end of the season. The main taxa identified by HTS analysis showed a shift in their relative abundance that drove the cluster separation as a function of time and temperature. The most abundant OTUs corresponded to genera such as Cladosporium, Alternaria, Myrothecium, or Pyricularia. Changes in the mycobiota composition were clearly dependent on the average air temperature with a potential impact on disease development in rice. In parallel, oligotyping analysis was performed to obtain a sub-OTU identification which revealed the presence of several oligotypes of Pyricularia and Bipolaris with relative abundance changing during monitoring.


Gut ◽  
2020 ◽  
pp. gutjnl-2020-322429 ◽  
Author(s):  
Ho-Su Lee ◽  
Evy Lobbestael ◽  
Séverine Vermeire ◽  
João Sabino ◽  
Isabelle Cleynen

Inflammatory bowel disease and Parkinson’s disease are chronic progressive disorders that mainly affect different organs: the gut and brain, respectively. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the ‘gut–brain axis’. Moreover, recent population-based studies have shown that inflammatory bowel disease might increase the risk of Parkinson's disease. Although the precise mechanisms underlying gut–brain interactions remain elusive, some of the latest findings have begun to explain the link. Several genetic loci are shared between both disorders with a similar direction of effect on the risk of both diseases. The most interesting example is LRRK2 (leucine-rich repeat kinase 2), initially identified as a causal gene in Parkinson's disease, and recently also implicated in Crohn’s disease. In this review, we highlight recent findings on the link between these seemingly unrelated diseases with shared genetic susceptibility. We discuss supporting and conflicting data obtained from epidemiological and genetic studies along with remaining questions and concerns. In addition, we discuss possible biological links including the gut–brain axis, microbiota, autoimmunity, mitochondrial function and autophagy.


Author(s):  
Shigeya Nagayama ◽  
Manabu Kume ◽  
Munehiro Oota ◽  
Koichiro Mizushima ◽  
Seiichi Mori

The coypu (Myocastor coypus) is a semi-aquatic herbivorous rodent that has been suspected to prey on freshwater unionid mussels in Japan. Fecal DNA metabarcoding that targeted bivalves and terrestrial plants was performed to examine the diet of exotic coypu in the Kiso River, central Japan. Thirty-two fecal samples from four floodplain waterbodies were collected seasonally. In one of the waterbodies, live and dead mussels were investigated to examine the possible effects of coypu predation on mussel population structures. Common coypu predation on unionid mussels was confirmed in two waterbodies. Midden surveys showed that medium- to large-sized mussels tended to be consumed by coypu; possibly resulting in population structures with few large-sized individuals. Seasonal diet selection of terrestrial plants was also detected: two perennial plants were consumed throughout the year, whereas some perennial plants were consumed seasonally. The number of terrestrial plant species/taxa as primary food was higher in summer than in winter, which was attributed to the high consumption of annual plants in the summer. Future studies need to examine the exhaustive diet of coypu including other animals and plants, as well as its effects on freshwater ecosystems in invaded regions.


Sign in / Sign up

Export Citation Format

Share Document