scholarly journals Functional traits link anthropogenic impact and disturbance regimes driving ecosystem function in a floodplain wetland complex

2021 ◽  
Vol 4 ◽  
Author(s):  
Natalie Rideout ◽  
Zacchaeus Compson ◽  
Wendy Monk ◽  
Mehrdad Hajibabaei ◽  
Teresita Porter ◽  
...  

Floodplains are disturbance-driven ecosystems with high spatial and temporal habitat diversity, making them both highly productive and hosts to high biodiversity. The unpredictable timing of flood and drought years creates a mosaic of habitat patches at different stages of succession, while water level fluctuation directly influences macrophyte community dynamics, and thus habitat structure. This habitat complexity and diversity of disturbance regimes makes floodplains an ideal ecosystem in which to examine the links between biodiversity, traits and ecosystem function. With up to 90% of floodplains in North America and Europe altered to the point of functional extinction, it is particularly imperative to study and conserve those that remain intact, such as the Lower Saint John River and its associated floodplain, including the Grand Lake Meadows and Portobello Creek wetland complex. Despite the rise in trait-based science, taxonomic resolution has imposed limitations, especially in wetland and floodplain ecosystems where communities are vastly understudied compared to their riverine counterparts. Compared to traditional biomonitoring, DNA-based biomonitoring from high-throughput genomics sequencing methods is powerful in that it can reliably characterize community composition in unprecedented detail, allowing us to assess how disturbance and environmental filters interact with invertebrate traits and ecosystem function. Using structural equation analysis, we take a whole ecosystem approach to examine ecosystem health across a floodplain disturbance gradient. We focus chiefly on how anthropogenic alteration within watersheds affects downstream floodplain wetlands, how the resulting patch diversity shapes communities and, finally, how those communities influence ecosystem function through trait diversity metrics. We also examine and compare which traits are associated with crucial ecosystem gradients.


2020 ◽  
Author(s):  
Natalie K. Rideout ◽  
Zacchaeus G. Compson ◽  
Wendy A. Monk ◽  
Meghann R. Bruce ◽  
Mehrdad Hajibabaei ◽  
...  

AbstractThe Biodiversity-Ecosystem Function hypothesis postulates that higher biodiversity is correlated with ecosystem function by providing a high number of filled niches through species response types and resource use patterns. Through their high spatio-temporal habitat diversity, floodplains are highly productive ecosystems, supporting communities that are naturally resilient and highly diverse. We examined linkages among floodplain wetland habitats, invertebrate communities and their associated traits, and ecosystem function across 60 sites within the floodplain wetlands of the lower Wolastoq | Saint John River, New Brunswick, using structural equation modelling and Threshold Indicator Taxa ANalysis (TITAN2). We identified key environmental filters of invertebrate communities, namely linking increased niche differentiation through historical change, flood pulse dynamics, and macrophyte bed complexity with increased taxa and functional diversity. Examination of traits linked to ecosystem functions revealed that healthy wetlands with higher primary productivity were associated with greater functional evenness and richness, while habitat patches with increased decomposition rates had low functional richness, reflecting highly disturbed habitat. Our results highlight key differences between wetland and riverine ecosystems, relating to how critical functions support healthy wetland habitats by providing increased resilience to disturbance, here associated with differing levels of conservation protection.



2021 ◽  
Vol 9 ◽  
Author(s):  
Natalie K. Rideout ◽  
Zacchaeus G. Compson ◽  
Wendy A. Monk ◽  
Meghann R. Bruce ◽  
Donald J. Baird

Natural hydrological fluctuations within river floodplains generate habitat diversity through variable connections between habitat patches and the main river channel. Human modification of floodplains can alter the magnitude and frequency of large floods and associated sediment movement by interrupting these floodplain connections. The lower Wolastoq | Saint John River and its associated floodplain wetlands are experiencing anthropogenic disturbances arising from climate change, increased urbanization in the watershed, changing upstream agricultural landscape practices, and, most notably, major road and dam construction. By comparing digitized aerial images, we identified key periods of change in wetland extent throughout an ecologically significant component of the floodplain, the Grand Lake Meadows and Portobello Creek wetland complex, with significant erosion evident in coves and backwater areas across the landscape following dam construction and significant accretion around the Jemseg River following highway construction. Connectivity and hydrological regime also influenced other habitat components, namely nutrients and metals retention, as well as the composition of the local macrophyte community. These findings address two key aspects of floodplain management: (1) understanding how hydrological alteration has historically influenced floodplain wetlands can inform us of how the ecosystem may respond under future conditions, such as climate change, and (2) the mechanisms by which habitat diversity and disturbance regimes filter biological communities, with the potential for patches to host a rich biodiversity continuously supporting critical ecosystem functions.



2009 ◽  
Vol 69 (2) ◽  
pp. 231-240 ◽  
Author(s):  
MV. Cianciaruso ◽  
MA. Batalha

In South America, the largest seasonal savanna region is the Brazilian cerrado. Our aim was to study temporal changes in some community descriptors, such as floristic composition, richness, species density, plant density, and cylindrical volume, in a seasonal cerrado, comparing it to a nearby hyperseasonal cerrado. In four different seasons, we placed randomly ten 1 m² quadrats in each vegetation form and sampled all the vascular plants. Seasonal changes in floristic composition, species density, and plant density were less pronounced in the seasonal than in the hyperseasonal cerrado. Floristic similarity between the vegetation forms was lower when the hyperseasonal cerrado was waterlogged. Richness and species density were higher in the seasonal cerrado, which reached its biomass peak at mid rainy season. The hyperseasonal cerrado, in turn, reached its biomass peak at early rainy season and, despite the waterlogging, maintained it until late rainy season. In the hyperseasonal cerrado, waterlogging acts as an environmental filter restricting the number of cerrado species able to withstand it. The seasonal cerrado community was more stable than the hyperseasonal one. Our results corroborated the idea that changes in the environmental filters will affect floristic composition and community structure in savannas.



2021 ◽  
Author(s):  
Mariarita Caracciolo ◽  
Fabienne Rigaut-Jalabert ◽  
Sarah Romac ◽  
Frédéric Mahé ◽  
Samuel Forsans ◽  
...  

AbstractMajor seasonal community reorganizations and associated biomass variations are landmarks of plankton ecology. However, the processes determining marine species and community turnover rates have not been fully elucidated so far. Here, we analyse patterns of planktonic protist community succession in temperate latitudes, based on quantitative taxonomic data from both microscopy counts and ribosomal DNA metabarcoding from plankton samples collected biweekly over 8 years (2009-2016) at the SOMLIT-Astan station (Roscoff, Western English Channel). Considering the temporal structure of community dynamics (creating temporal correlation), we elucidated the recurrent seasonal pattern of the dominant species and OTUs (rDNA-derived taxa) that drive annual plankton successions. The use of morphological and molecular analyses in combination allowed us to assess absolute species abundance while improving taxonomic resolution, and revealed a greater diversity. Overall, our results underpinned a protist community characterised by a seasonal structure, which is supported by the dominant OTUs. We detected that some were partly benthic as a result of the intense tidal mixing typical of the French coasts in the English Channel. While the occurrence of these microorganisms is driven by the physical and biogeochemical conditions of the environment, internal community processes, such as the complex network of biotic interactions, also play a key role in shaping protist communities.



2021 ◽  
Vol 119 (1) ◽  
pp. e2020956119
Author(s):  
Anshuman Swain ◽  
Levi Fussell ◽  
William F. Fagan

The assembly and maintenance of microbial diversity in natural communities, despite the abundance of toxin-based antagonistic interactions, presents major challenges for biological understanding. A common framework for investigating such antagonistic interactions involves cyclic dominance games with pairwise interactions. The incorporation of higher-order interactions in such models permits increased levels of microbial diversity, especially in communities in which antibiotic-producing, sensitive, and resistant strains coexist. However, most such models involve a small number of discrete species, assume a notion of pure cyclic dominance, and focus on low mutation rate regimes, none of which well represent the highly interlinked, quickly evolving, and continuous nature of microbial phenotypic space. Here, we present an alternative vision of spatial dynamics for microbial communities based on antagonistic interactions—one in which a large number of species interact in continuous phenotypic space, are capable of rapid mutation, and engage in both direct and higher-order interactions mediated by production of and resistance to antibiotics. Focusing on toxin production, vulnerability, and inhibition among species, we observe highly divergent patterns of diversity and spatial community dynamics. We find that species interaction constraints (rather than mobility) best predict spatiotemporal disturbance regimes, whereas community formation time, mobility, and mutation size best explain patterns of diversity. We also report an intriguing relationship among community formation time, spatial disturbance regimes, and diversity dynamics. This relationship, which suggests that both higher-order interactions and rapid evolution are critical for the origin and maintenance of microbial diversity, has broad-ranging links to the maintenance of diversity in other systems.



2020 ◽  
Vol 117 (15) ◽  
pp. 8539-8545 ◽  
Author(s):  
Alex Bush ◽  
Wendy A. Monk ◽  
Zacchaeus G. Compson ◽  
Daniel L. Peters ◽  
Teresita M. Porter ◽  
...  

The complexity and natural variability of ecosystems present a challenge for reliable detection of change due to anthropogenic influences. This issue is exacerbated by necessary trade-offs that reduce the quality and resolution of survey data for assessments at large scales. The Peace–Athabasca Delta (PAD) is a large inland wetland complex in northern Alberta, Canada. Despite its geographic isolation, the PAD is threatened by encroachment of oil sands mining in the Athabasca watershed and hydroelectric dams in the Peace watershed. Methods capable of reliably detecting changes in ecosystem health are needed to evaluate and manage risks. Between 2011 and 2016, aquatic macroinvertebrates were sampled across a gradient of wetland flood frequency, applying both microscope-based morphological identification and DNA metabarcoding. By using multispecies occupancy models, we demonstrate that DNA metabarcoding detected a much broader range of taxa and more taxa per sample compared to traditional morphological identification and was essential to identifying significant responses to flood and thermal regimes. We show that family-level occupancy masks high variation among genera and quantify the bias of barcoding primers on the probability of detection in a natural community. Interestingly, patterns of community assembly were nearly random, suggesting a strong role of stochasticity in the dynamics of the metacommunity. This variability seriously compromises effective monitoring at local scales but also reflects resilience to hydrological and thermal variability. Nevertheless, simulations showed the greater efficiency of metabarcoding, particularly at a finer taxonomic resolution, provided the statistical power needed to detect change at the landscape scale.



Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 672 ◽  
Author(s):  
Kiyoshi Umeki ◽  
Mitsuru Kawasaki ◽  
Nobuhiko Shigyo ◽  
Toshihide Hirao

Resprouting is an important functional trait for determining community dynamics and the persistence of individuals and populations. However, community-wide research on resprouting has primarily focused on severely damaged trees. We investigated resprouting from trees in a range of undisturbed natural forests along an elevational gradient in central Japan and analyzed the data at inter- and intraspecific levels. First, we formulated interspecific relationships among resprout production, parent stem growth, multi-stemmedness, and dominance in forest communities using a structural equation model (SEM). Second, we analyzed intraspecific variation in the resprout number per stem for nine resprouting species using a hierarchical Bayesian method. We found that resprout production and parent stem growth were negatively correlated; resprouting resulted in multi-stemmed adult forms, and species with multi-stemmed forms tended to be less dominant in undisturbed forest communities. We observed various intraspecific resprouting responses to parental and environmental factors. For example, soil temperature had generally positive effects for most species, whereas dbh appeared to have only weak effects on a few species. Our SEM summarized well the direct and indirect relationships of species’ traits, including resprout production, in the undisturbed forests. The observed intraspecific patterns in the resprouting responses can serve as a starting point for understanding species’ traits within this context.



2014 ◽  
Vol 33 (3) ◽  
pp. 765-777 ◽  
Author(s):  
Allison R. Rober ◽  
Kevin H. Wyatt ◽  
R. Jan Stevenson ◽  
Merritt R. Turetsky




F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 119 ◽  
Author(s):  
Deron E. Burkepile ◽  
John D. Parker

Plant-herbivore interactions shape community dynamics across marine, freshwater, and terrestrial habitats. From amphipods to elephants and from algae to trees, plant-herbivore relationships are the crucial link generating animal biomass (and human societies) from mere sunlight. These interactions are, thus, pivotal to understanding the ecology and evolution of virtually any ecosystem. Here, we briefly highlight recent advances in four areas of plant-herbivore interactions: (1) plant defense theory, (2) herbivore diversity and ecosystem function, (3) predation risk aversion and herbivory, and (4) how a changing climate impacts plant-herbivore interactions. Recent advances in plant defense theory, for example, highlight how plant life history and defense traits affect and are affected by multiple drivers, including enemy pressure, resource availability, and the local plant neighborhood, resulting in trait-mediated feedback loops linking trophic interactions with ecosystem nutrient dynamics. Similarly, although the positive effect of consumer diversity on ecosystem function has long been recognized, recent advances using DNA barcoding to elucidate diet, and Global Positioning System/remote sensing to determine habitat selection and impact, have shown that herbivore communities are probably even more functionally diverse than currently realized. Moreover, although most diversity-function studies continue to emphasize plant diversity, herbivore diversity may have even stronger impacts on ecosystem multifunctionality. Recent studies also highlight the role of risk in plant-herbivore interactions, and risk-driven trophic cascades have emerged as landscape-scale patterns in a variety of ecosystems. Perhaps not surprisingly, many plant-herbivore interactions are currently being altered by climate change, which affects plant growth rates and resource allocation, expression of chemical defenses, plant phenology, and herbivore metabolism and behavior. Finally, we conclude by noting that although the field is advancing rapidly, the world is changing even more rapidly, challenging our ability to manage these pivotal links in the food chain.



Sign in / Sign up

Export Citation Format

Share Document