scholarly journals Discovery of Cytospora species associated with canker disease of tree hosts from Mount Dongling of China

MycoKeys ◽  
2020 ◽  
Vol 62 ◽  
pp. 97-121 ◽  
Author(s):  
Haiyan Zhu ◽  
Meng Pan ◽  
Jadson D.P. Bezerra ◽  
Chengming Tian ◽  
Xinlei Fan

Members of Cytospora encompass important plant pathogens, saprobes and endophytes on a wide range of woody hosts with a worldwide distribution. In the current study, we obtained seven representative isolates from six tree hosts of Betulaceae, Juglandaceae, Rosaceae, Tiliaceae and Ulmaceae in Mount Dongling of China. Based on morphological comparison and phylogenetic analyses using partial ITS, LSU, act, rpb2, tef1-α and tub2 gene sequences, we identified two known species (Cytospora leucostoma and C. pruinopsis) and two novel species (C. coryli and C. spiraeicola). These results represent the first study on Cytospora species associated with canker disease from Mount Dongling of China.

MycoKeys ◽  
2019 ◽  
Vol 59 ◽  
pp. 67-94 ◽  
Author(s):  
Haiyan Zhu ◽  
Meng Pan ◽  
Guido Bonthond ◽  
Chengming Tian ◽  
Xinlei Fan

Diaporthales is a fungal order comprising important plant pathogens, saprobes and endophytes on a wide range of woody hosts. It is often difficult to differentiate the pathogens in this order, since both the morphology and disease symptoms are similar among the various species. In the current study, we obtained 15 representative diaporthalean isolates from six tree hosts belonging to plant families Betulaceae, Fagaceae, Juglandaceae, Rosaceae, and Ulmaceae from Mount Dongling in China. Six species were identified residing in four families of Diaporthales (Diaporthaceae, Erythrogloeaceae, Juglanconidaceae and Melanconidaceae). Based on morphological comparison and the phylogenetic analyses of partial ITS, LSU, cal, his3, rpb2, tef1-α and tub2 gene sequences, we identified five known species (Diaporthe betulina, D. eres, D. rostrata, Juglamconis oblonga and Melanconis stilbostoma) and one novel species (Dendrostoma donglinensis). These results represent the first study of diaporthalean fungi associated with canker and dieback symptoms from Mount Dongling in Beijing, China.


2020 ◽  
Vol 86 (6) ◽  
Author(s):  
Ebrahim Osdaghi ◽  
Touraj Rahimi ◽  
S. Mohsen Taghavi ◽  
Maryam Ansari ◽  
Sadegh Zarei ◽  
...  

ABSTRACT Members of the genus Clavibacter are economically important bacterial plant pathogens infecting a set of diverse agricultural crops (e.g., alfalfa, corn, potato, tomato, and wheat). Tomato-associated Clavibacter sp. strains account for a great portion of the genetic diversity of the genus, and C. michiganensis sensu stricto (formerly C. michiganensis subsp. michiganensis), causing bacterial canker disease, is considered one of the most destructive seed-borne agents for the crop worldwide. However, current taxonomic descriptions of the genus do not reflect the existing diversity of the strains, resulting in unsatisfactory results in quarantine surveys for the pathogens. In this study, we used all the available genome sequences of Clavibacter sp. strains, including the type strains of newly described subspecies, to provide precise insight into the diversity of tomato-associated members of the genus and further clarify the taxonomic status of the strains using genotypic and phenotypic features. The results of phylogenetic analyses revealed the existence of nine hypothetical new species among the investigated strains. None of the three new subspecies (i.e., C. michiganensis subsp. californiensis, C. michiganensis subsp. chilensis, and C. michiganensis subsp. phaseoli) is included within the tomato-pathogenic C. michiganensis sensu stricto lineage. Although comparative genomics revealed the lack of chp and tomA pathogenicity determinant gene clusters in the nonpathogenic strains, a number of pathogenicity-related genes were noted to be present in all the strains regardless of their pathogenicity characteristics. Altogether, our results indicate a need for a formal taxonomic reconsideration of tomato-associated Clavibacter sp. strains to facilitate differentiation of the lineages in quarantine inspections. IMPORTANCE Clavibacter spp. are economically important bacterial plant pathogens infecting a set of diverse agricultural crops, such as alfalfa, corn, pepper, potato, tomato, and wheat. A number of plant-pathogenic members of the genus (e.g., C. michiganensis sensu stricto and C. sepedonicus, infecting tomato and potato plants, respectively) are included in the A2 (high-risk) list of quarantine pathogens by the European and Mediterranean Plant Protection Organization (EPPO). Although tomato-associated members of Clavibacter spp. account for a significant portion of the genetic diversity in the genus, only the strains belonging to C. michiganensis sensu stricto (formerly C. michiganensis subsp. michiganensis) cause bacterial canker disease of tomato and are subjected to the quarantine inspections. Hence, discrimination between the pathogenic and nonpathogenic Clavibacter sp. strains associated with tomato seeds and transplants plays a pivotal role in the accurate detection and cost-efficient management of the disease. On the other hand, detailed information on the genetic contents of different lineages of the genus would lead to the development of genome-informed specific detection techniques. In this study, we have provided an overview of the phylogenetic and genomic differences between the pathogenic and nonpathogenic tomato-associated Clavibacter sp. strains. We also noted that the taxonomic status of newly introduced subspecies of C. michiganensis (i.e., C. michiganensis subsp. californiensis, C. michiganensis subsp. chilensis, and C. michiganensis subsp. phaseoli) should be reconsidered.


Phytotaxa ◽  
2015 ◽  
Vol 197 (4) ◽  
pp. 227-244 ◽  
Author(s):  
Xinlei Fan ◽  
Kevin D. Hyde ◽  
Qin Yang ◽  
Yingmei Liang ◽  
Rong Ma ◽  
...  

Cytospora species are important phytopathogens causing severe canker disease with a worldwide distribution and broad host range. However, identification of taxa to species level is difficult due to poor phylogenetic understanding and lack of sequenced type species. Morphological and phylogenetic studies have been carried out on several important hosts such as Eucalyptus and Malus in China, Iran, and South Africa. In this study destructive canker diseases of the anti-desertification plants, Elaeagnus angustifolia, Hippophae rhamnoides, and Salix psammophila, were investigated in northwest China. Multilocus phylogenetic analyses of ITS, nrLSU, RPB2, and ACT gene regions, combined with detailed morphological analyses and comparison with ex-type strains revealed six Cytospora species, C. chrysosperma, C. elaeagni, C. hippophaes, C. nivea, C. populina comb. nov. and C. gigaspora sp. nov. causing cankers on these hosts. The novel species C. gigaspora has flat multiple locules with a conceptacle and unusually long 12 µm conidia. Detailed descriptions and molecular data for the Cytospora species causing cankers on the three psammophilic host plants are provided. Cytospora elaeagni and C. hippophaes have previously been recorded from Elaeagnus angustifolia and Hippophae rhamnoides, whereas the other species causing Cytospora canker of Elaeagnus angustifolia and Salix psammophila are new records.


2019 ◽  
Vol 42 (1) ◽  
pp. 1-35 ◽  
Author(s):  
M. Fu ◽  
P.W. Crous ◽  
Q. Bai ◽  
P.F. Zhang ◽  
J. Xiang ◽  
...  

Colletotrichum species are plant pathogens, saprobes, and endophytes on a range of economically important hosts. However, the species occurring on pear remain largely unresolved. To determine the morphology, phylogeny and biology of Colletotrichum species associated with Pyrus plants, a total of 295 samples were collected from cultivated pear species (including P. pyrifolia, P. bretschneideri, and P. communis) from seven major pear-cultivation provinces in China. The pear leaves and fruits affected by anthracnose were sampled and subjected to fungus isolation, resulting in a total of 488 Colletotrichum isolates. Phylogenetic analyses based on six loci (ACT, TUB2, CAL, CHS-1, GAPDH, and ITS) coupled with morphology of 90 representative isolates revealed that they belong to 10 known Colletotrichum species, including C. aenigma, C. citricola, C. conoides, C. fioriniae, C. fructicola, C. gloeosporioides, C. karstii, C. plurivorum, C. siamense, C. wuxiense, and two novel species, described here as C. jinshuiense and C. pyrifoliae. Of these, C. fructicola was the most dominant, occurring on P. pyrifolia and P. bretschneideri in all surveyed provinces except in Shandong, where C. siamense was dominant. In contrast, only C. siamense and C. fioriniae were isolated from P. communis, with the former being dominant. In order to prove Koch's postulates, pathogenicity tests on pear leaves and fruits revealed a broad diversity in pathogenicity and aggressiveness among the species and isolates, of which C. citricola, C. jinshuiense, C. pyrifoliae, and C. conoides appeared to be organ-specific on either leaves or fruits. This study also represents the first reports of C. citricola, C. conoides, C. karstii, C. plurivorum, C. siamense, and C. wuxiense causing anthracnose on pear.


Phytotaxa ◽  
2018 ◽  
Vol 383 (2) ◽  
pp. 181 ◽  
Author(s):  
MENG PAN ◽  
HAI-YAN ZHU ◽  
CHENG-MING TIAN ◽  
LOURDES V. ALVAREZ ◽  
XIN-LEI FAN

Cytospora species are common pathogens associated with stem canker diseases of woody plants, with a worldwide distribution and broad host range. The criteria of species level identification are difficult due to insufficient ex-type cultures with molecular data and phylogenetic understanding. Two fungal specimens were collected from Picea crassifolia associated with symptomatic canker and dieback disease in the Xinjiang Uygur Autonomous Region, China. They were identified as novel species based on morphology plus support from multilocus phylogenetic analyses of ITS, LSU, ACT, RPB2 and TEF1-α gene regions. Cytospora piceae is characterized by its ostiolated pycnidia with vesicularly arranged locules, and hyaline, eguttulate, aseptate, allantoid conidia, which differs from similar species in its host association and multilocus phylogeny.


2006 ◽  
Vol 56 (6) ◽  
pp. 1251-1255 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, non-spore-forming, slightly halophilic bacterial strain, DSW-5T, was isolated from seawater off Dokdo, Korea, and subjected to a polyphasic taxonomic study. It grew optimally at 25–28 °C and in the presence of 2 % (w/v) NaCl. Strain DSW-5T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 and iso-C15 : 0 3-OH as the major fatty acids. The major polar lipids detected were phosphatidylethanolamine, three unidentified phospholipids and an amino-group-containing lipid. The DNA G+C content was 30.0 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DSW-5T was most closely related to the genus Polaribacter. Similarity values between the 16S rRNA gene sequences of strain DSW-5T and the type strains of recognized Polaribacter species were in the range 96.2–96.8 %. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DSW-5T (=KCTC 12392T=DSM 17204T) was classified in the genus Polaribacter as the type strain of a novel species, for which the name Polaribacter dokdonensis sp. nov. is proposed.


2006 ◽  
Vol 56 (4) ◽  
pp. 777-780 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, non-spore-forming bacterial strain, DS-44T, was isolated from soil from Dokdo in Korea, and its taxonomic position was investigated by using a polyphasic approach. It grew optimally at 25 °C and in the presence of 2 % (w/v) NaCl. Strain DS-44T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and C16 : 1 ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The DNA G+C content was 49·0 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DS-44T belongs to the genus Algoriphagus of the phylum Bacteroidetes. Similarity values between the 16S rRNA gene sequences of strain DS-44T and those of the type strains of recognized Algoriphagus species were in the range 93·8–95·7 %, making it possible to categorize strain DS-44T as a species that is separate from previously described Algoriphagus species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DS-44T (=KCTC 12545T=CIP 108837T) was classified in the genus Algoriphagus as the type strain of a novel species, for which the name Algoriphagus terrigena sp. nov. is proposed.


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4084-4097 ◽  
Author(s):  
Yuan Xu ◽  
Ying Yan ◽  
Lifang Li ◽  
Khaled A. S. Al-Rasheid ◽  
Saleh A. Al-Farraj ◽  
...  

This paper investigates the morphology and infraciliature of three karyorelictean ciliates, Trachelocerca chinensis sp. n., Tracheloraphis dragescoi sp. n. and a rarely known form, Geleia acuta (Dragesco, 1960) Foissner, 1998, which were isolated from the intertidal zone of sandy beaches at Zhanjiang and Qingdao, China. Trachelocerca chinensis sp. n. is distinguished from related forms by having 26–30 somatic kineties, a narrow glabrous stripe and a single nuclear group composed of approximately four to six macronuclei and two micronuclei. Tracheloraphis dragescoi sp. n. can be recognized through its 14–22 somatic kineties, wide glabrous stripe and a single nuclear group composed of about four macronuclei. Phylogenetic analyses based on small-subunit (SSU) rRNA gene sequences indicated that the genera Trachelocerca and Tracheloraphis are closely related but that neither of them appears to be a clearly monophyletic group. Nonetheless, the monophyly of Trachelocerca is not rejected by the approximately unbiased (AU) test (P = 0.143, >0.05), although that of Tracheloraphis is rejected (P = 0.011, <0.05). Geleia acuta, meanwhile, branched with Geleia fossata and falls in the Geleia clade.


2010 ◽  
Vol 60 (3) ◽  
pp. 531-536 ◽  
Author(s):  
Hye Min Kim ◽  
Chung Yeon Hwang ◽  
Byung Cheol Cho

A slightly curved, rod-shaped marine bacterium, designated strain CL-S1T, was isolated from near Dokdo, an island in the East Sea, Korea. Cells were Gram-negative and grew well under either aerobic or microaerobic conditions. Analyses of the 16S rRNA and gyrA gene sequences of strain CL-S1T revealed an affiliation with the genus Arcobacter within the class Epsilonproteobacteria. Phylogenetic analyses based on 16S rRNA and gyrA gene sequences showed that strain CL-S1T formed a robust clade with Arcobacter halophilus LA31BT, with sequence similarities of 96.1 and 88.2 %, respectively. DNA–DNA relatedness between strain CL-S1T and A. halophilus DSM 18005T was 44 %, indicating that they represent genomically distinct species. Strain CL-S1T grew optimally at 30–37 °C, at pH 7 and in the presence of 3–5 % NaCl. The dominant cellular fatty acids were iso-C15 : 0 2-OH and/or C16 : 1 ω7c (28.4 %), C16 : 0 (26.2 %) and C18 : 1 ω7c (22.3 %). The DNA G+C content of strain CL-S1T was 28 mol%. Strain CL-S1T differed phenotypically from A. halophilus LA31BT based on its ability to grow aerobically at 10 °C and inability to grow under anaerobic conditions. Based on the data presented, strain CL-S1T is considered to represent a novel species of the genus Arcobacter, for which the name Arcobacter marinus sp. nov. is proposed. The type strain is CL-S1T (=KCCM 90072T =JCM 15502T).


2021 ◽  
Vol 7 (11) ◽  
pp. 940
Author(s):  
Anna Poli ◽  
Valeria Prigione ◽  
Elena Bovio ◽  
Iolanda Perugini ◽  
Giovanna Cristina Varese

The order Lulworthiales, with its sole family Lulworthiaceae, consists of strictly marine genera found on a wide range of substrates such as seagrasses, seaweeds, and seafoam. Twenty-one unidentified Lulworthiales were isolated in previous surveys aimed at broadening our understanding of the biodiversity hosted in the Mediterranean Sea. Here, these organisms, mostly found in association with Posidonia oceanica and with submerged woods, were examined using thorough multi-locus phylogenetic analyses and morphological observations. Maximum-likelihood and Bayesian phylogeny based on nrITS, nrSSU, nrLSU, and four protein-coding genes led to the introduction of three novel species of the genus Paralulworthia: P. candida, P. elbensis, and P. mediterranea. Once again, the marine environment is a confirmed huge reservoir of novel fungal lineages with an under-investigated biotechnological potential waiting to be explored.


Sign in / Sign up

Export Citation Format

Share Document