scholarly journals Genetic signatures of polymorphic microsatellite loci in the Ambiguous silver pomfret, Pampus argenteus (Teleostei, Stromateidae)

ZooKeys ◽  
2018 ◽  
Vol 810 ◽  
pp. 139-151
Author(s):  
Yuan Li ◽  
Long-Shan Lin ◽  
Tian-Xiang Gao

Pampusargenteus is a broadly exploited pelagic fish species, commonly misidentified as Pampusechinogaster. Genetic variation and population structure in Pampusargenteus was studied based on seven microsatellite loci. The observed high average allele number, heterozygosity values, and polymorphism information content of P.argenteus suggested high genetic diversity. No population genetic differentiation was detected based on the results of pairwise Fst, three-dimensional factorial correspondence analysis (3D-FCA) and STRUCTURE analysis, which implied continuous gene flow. Wilcoxon signed rank tests did not indicate significant heterozygosity excess, and recent genetic bottleneck events were not detected. Coupled with previous mitochondrial DNA results, the findings presented here indicate that high gene flow characterizes the current phylogeographic pattern of the species.

ZooKeys ◽  
2018 ◽  
Vol 810 ◽  
pp. 139-151 ◽  
Author(s):  
Yuan Li ◽  
Long-Shan Lin ◽  
Tian-Xiang Gao

Pampusargenteus is a broadly exploited pelagic fish species, commonly misidentified as Pampusechinogaster. Genetic variation and population structure in Pampusargenteus was studied based on seven microsatellite loci. The observed high average allele number, heterozygosity values, and polymorphism information content of P.argenteus suggested high genetic diversity. No population genetic differentiation was detected based on the results of pairwise Fst, three-dimensional factorial correspondence analysis (3D-FCA) and STRUCTURE analysis, which implied continuous gene flow. Wilcoxon signed rank tests did not indicate significant heterozygosity excess, and recent genetic bottleneck events were not detected. Coupled with previous mitochondrial DNA results, the findings presented here indicate that high gene flow characterizes the current phylogeographic pattern of the species.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mashair Sir El Khatim Mustafa ◽  
Zairi Jaal ◽  
Sumia Abu Kashawa ◽  
Siti Azizah Mohd Nor

Abstract Background Anopheles arabiensis is a member of Anopheles gambiae complex and the main malaria vector in Sudan. There is insufficient population genetics data available on An. arabiensis for an understanding of vector population structure and genetics, which are important for the malaria vector control programmes in this country. The objective of this investigation is to study the population structure, gene flow and isolation by distance among An. arabiensis populations for developing control strategies. Methods Mosquitoes were collected from six sites located in three different states in Sudan, Khartoum, Kassala and Sennar, using pyrethrum spray catch of indoor resting mosquitoes. Anopheline mosquitoes were identified morphologically and based on species specific nucleotide sequences in the ribosomal DNA intergenic spacers (IGS). Seven published An. gambiae microsatellite loci primers were used to amplify the DNA of An. arabiensis samples. Results PCR confirmed that An. arabiensis was the main malaria vector found in the six localities. Of the seven microsatellite loci utilized, six were found to be highly polymorphic across populations, with high allelic richness and heterozygosity with the remaining one being monomorphic. Deviation from Hardy–Weinberg expectations were found in 21 out of 42 tests in the six populations due to heterozygote deficiency. Bayesian clustering analysis revealed two gene pools, grouping samples into two population clusters; one includes four and the other includes two populations. The clusters were not grouped according to the three states but were instead an admixture. The genetic distances between pairs of populations ranged from 0.06 to 0.24. Significant FST was observed between all pairwise analyses of An. arabiensis populations. The Kassala state population indicated high genetic differentiation (FST ranged from 0.17 to 0.24) from other populations, including one which is also located in the same state. High gene flow (Nm = 1.6–8.2) was detected among populations within respective clusters but limited between clusters particularly with respect to Kassala state. There was evidence of a bottleneck event in one of the populations (Al Haj Yousif site). No isolation by distance pattern was detected among populations. Conclusions This study revealed low levels of population differentiation with high gene flow among the An. arabiensis populations investigated in Sudan, with the exception of Kassala state.


2020 ◽  
Vol 49 (3) ◽  
pp. 765-775
Author(s):  
Amanda de Faria Santos ◽  
Nara C Chiarini Pena Barbosa ◽  
Thaís Coelho Thomazini ◽  
Adriana Coletto Morales

Abstract The species of the genus Ceraeochrysa, known as green lacewings or trash-carriers, are widely distributed along the Americas and its islands. In Brazil, 28 species are found, including Ceraeochrysa cincta (Schneider), Ceraeochrysa claveri (Navás), and Ceraeochrysa cubana (Hagen). These species are recorded on many crops, where they are often used for biological control. For this use, knowledge of the genetic features of the species is extremely important because they are associated to the species’ ability to withstand different conditions in new environments, such as variations of temperature and presence of pathogens. However, little is known about the genetic features of Ceraeochrysa species. Here, we analyze and compare the distribution of the genetic variability of C. cincta, C. claveri, and C. cubana in agroecosystem populations of southeast Brazil. We found a high genetic diversity in each of the three species, and no strong genetic structure was detected, such that genetic diversity is broadly shared among the crops and localities analyzed. We can conclude that there was a high gene flow among the sampled Ceraeochrysa populations (natural or driven by anthropic action) since the exchange of seedlings among crops can lead to the distribution of the specimens.


HortScience ◽  
2010 ◽  
Vol 45 (3) ◽  
pp. 457-459 ◽  
Author(s):  
Nian Wang ◽  
Zhang Chang Qin ◽  
Jun-bo Yang ◽  
Jing-li Zhang

Rhododendron delavayi Franch. is an important ornamental plant and often plays a role in natural hybridization with other sympatric species in Rhododendron subgenus Hymenanthes. Fifteen microsatellite loci were developed and characterized in this species. The average allele number of these microsatellites was four per locus, ranging from three to six. The ranges of expected (HE) and observed (HO) heterozygosities were 0.0365 to 0.7091 and 0.0263 to 0.9512, respectively. Cross-species amplification in R. agastum and R. decorum showed that a subset of these markers holds promise for congeneric species study. These sets of markers are potentially useful to investigate the genetic structure and gene flow of R. delavayi and other congeneric species.


2020 ◽  
Author(s):  
Mashair Mustafa ◽  
Zairi Jaal ◽  
Sumia Abu Kashawa ◽  
Siti Azizah Mohd Nor

Abstract Background Anopheles arabiensis is a member of An. gambiae complex and a main malaria vector in Sudan. There is no sufficient An. arabiensis population genetic data available an understanding of vector population structure and genetics are important to the malaria vector control programs. The objective of this investigation is to study the population structure, gene flow and isolation by distance among An. arabiensis for developing control strategies Methods Mosquitoes were collected from six sites in Sudan using pyrethrum spray catch of indoor resting mosquitoes. Anopheline mosquitos were identified morphologically and based on species specific nucleotide sequences in the ribosomal DNA intergenic spacers (IGS). Seven microsatellite loci published An. gambiae primers were used to amplify the DNA of An. arabiensis samples. Results PCR confirmed that An. arabiensis was the main malaria vector found in the six localities. Of the seven microsatellite loci utilized, six were found to be highly polymorphic across populations, with high allelic richness and heterozygosity with the remaining one being monomorphic. Deviation from Hardy-Weinberg expectations were found in 21 out of 42 tests in the six populations due to heterozygotes deficiency. Bayesian clustering analysis revealed two gene pools, grouping samples into two population clusters; one includes four and the other includes two populations. The genetic distances between pairs of populations ranged from 0.06 to 0.24. Significant F ST was observed between all An. arabiensis populations . Kr population indicated high genetic differentiation (F ST ranged from 0.17 to 0.24). High gene flow (Nm= 1.6–8.2) was detected between clusters. There was evidence of a bottleneck event in the Hj population. No isolation by distance pattern was detected among populations. Conclusions This study revealed low levels of population differentiation with high gene flow among six An. arabiensis populations in Sudan.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Akiko Kyuno ◽  
Mifue Shintaku ◽  
Yuko Fujita ◽  
Hiroto Matsumoto ◽  
Motoo Utsumi ◽  
...  

We sequenced the mitochondrial ND4 gene to elucidate the evolutionary processes ofBathymodiolusmussels and mytilid relatives. Mussels of the subfamily Bathymodiolinae from vents and seeps belonged to 3 groups and mytilid relatives from sunken wood and whale carcasses assumed the outgroup positions to bathymodioline mussels. Shallow water mytilid mussels were positioned more distantly relative to the vent/seep mussels, indicating an evolutionary transition from shallow to deep sea via sunken wood and whale carcasses.Bathymodiolus platifronsis distributed in the seeps and vents, which are approximately 1500 km away. There was no significant genetic differentiation between the populations. There existed high gene flow betweenB. septemdierumandB. breviorand low but not negligible gene flow betweenB. marisindicusandB. septemdierumorB. brevior, although their habitats are 5000–10 000 km away. These indicate a high adaptability to the abyssal environments and a high dispersal ability ofBathymodiolusmussels.


Author(s):  
Patricia Sanae Sujii ◽  
Evandro Vagner Tambarussi ◽  
Carolina Grando ◽  
Ellida de Aguiar Silvestre ◽  
João Paulo Gomes Viana ◽  
...  

2006 ◽  
Vol 7 (2) ◽  
pp. 309-313 ◽  
Author(s):  
Nusha Keyghobadi ◽  
Katherine P. Unger ◽  
Jason D. Weintraub ◽  
Dina M. Fonseca

Sign in / Sign up

Export Citation Format

Share Document