The Dynamics of a Cracked Rotor With an Active Magnetic Bearing

Author(s):  
Changsheng Zhu ◽  
David A. Robb ◽  
David J. Ewins

The dynamic characteristics of a cracked rotor with an active magnetic bearing (AMB) are theoretically analyzed in this paper. The effects of using optimal controller parameters on the dynamic characteristics of the cracked rotor and the effect of the crack on the stability of the active control system are discussed. It is shown that the dynamic characteristics of the cracked rotor with AMBs are clearly more complex than that of the traditional cracked rotor system. Adaptive control with AMBs may hide the fault characteristics of the cracked rotor, rather than helping to diagnose a crack; this will depend on the controller strategy used. It is very difficult to detect a crack in the AMB-rotor system when the vibration of the rotor system is fully controlled. Only the super-harmonic components of 2X and 3X revolution in the sub-critical speed region can be used as a index to detect a crack in the rotor–AMB system. If the effect of the crack is not considered in designing the controller, then the AMB-rotor system will lose its stability in some cases when cracks appear.

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
M. Kamel ◽  
H. S. Bauomy

The rotor-active magnetic bearing system subjected to a periodically time-varying stiffness having quadratic and cubic nonlinearities is studied and solved. The multiple time scale technique is applied to solve the nonlinear differential equations governing the system up to the second order approximation. All possible resonance cases are deduced at this approximation and some of them are confirmed by applying the Rung–Kutta method. The main attention is focused on the stability of the steady-state solution near the simultaneous principal resonance and the effects of different parameters on the steady-state response. A comparison is made with the available published work.


2011 ◽  
Vol 109 ◽  
pp. 199-203
Author(s):  
Wei Wei Zhang

To investigate the active magnetic bearing-rotor system which is influenced by the base motion, coupled dynamic model is developed in this paper. The effects of base motion, electrical differential equations of control system and the mounting of sensors at different positions on the dynamic characteristics of the magnetic bearing-rotor system were discussed. The feasibility of the dynamic model is illustrated. This dynamic model can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.


2003 ◽  
Vol 125 (3) ◽  
pp. 307-316 ◽  
Author(s):  
Y. S. Ho ◽  
H. Liu ◽  
L. Yu

This paper is concerned with the effect of a thrust active magnetic bearing (TAMB) on the stability and bifurcation of an active magnetic bearing rotor system (AMBRS). The shaft is flexible and modeled by using the finite element method that can take the effects of inertia and shear into consideration. The model is reduced by a component mode synthesis method, which can conveniently account for nonlinear magnetic forces and moments of the bearing. Then the system equations are obtained by combining the equations of the reduced mechanical system and the equations of the decentralized PID controllers. This study focuses on the influence of nonlinearities on the stability and bifurcation of T periodic motion of the AMBRS subjected to the influences of both journal and thrust active magnetic bearings and mass eccentricity simultaneously. In the stability analysis, only periodic motion is investigated. The periodic motions and their stability margins are obtained by using shooting method and path-following technique. The local stability and bifurcation behaviors of periodic motions are obtained by using Floquet theory. The results indicate that the TAMB and mass eccentricity have great influence on nonlinear stability and bifurcation of the T periodic motion of system, cause the spillover of system nonlinear dynamics and degradation of stability and bifurcation of T periodic motion. Therefore, sufficient attention should be paid to these factors in the analysis and design of a flexible rotor system equipped with both journal and thrust magnetic bearings in order to ensure system reliability.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Cong Peng ◽  
Kaiwen Cai ◽  
Zhiquan Deng ◽  
Kexiang Li

Synchronous vibration, a common issue in active magnetic bearing (AMB) system, is mainly caused by mass imbalance of the rotor. It comes with high-power consumption and serious impact on the housing base, dramatically degrading the performance of AMB. Magnetically suspended flywheel (MSFW), which owns a flat rotor and consequently shows strong gyroscopic effects even at low operating speed, requires additional attention not only for suppressing the synchronous vibration but also for maintaining the overall stability faced with the coupled dynamics. In this work, in order to suppress the vibration torques in MSFW with significant gyroscopic effects, an improved synchronous rotating frame- (SRF-) based control method is proposed. The proposed method introduces the compensation phase for stability adjustment and aims at simultaneously suppressing the synchronous components in the coupled axes. Firstly, the vibration torque model of MSFW is established, and the baseline control strategy for suspension and gyroscopic effects restrain is derived. Then, the principle and implementation of the improved SRF-based vibration torque method are analyzed, which aims at suppressing the synchronous vibration torques through attenuating synchronous components in coil currents. Moreover, the stability of the overall closed-loop system is analyzed. Finally, the effectiveness of the proposed method is verified through simulation and experimental results.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Huichun Peng ◽  
Qing He ◽  
Yaxin Zhen

The investigation of the effects of mass eccentricity on stability of a gravity dominated cracked Jeffcott rotor would generally provide practical applicability to crack detection and instability control of the heavy loading turbo-machinery system. Based upon the numerical Floquet method, the stability and bifurcations of the periodic time-dependent rotor with a transverse breathing crack are studied with respect to the varied mass eccentricity at different rotation speed, and the stability diagrams in the parameter plane are obtained which the previous studies have not covered. The numerical response of the cracked rotor system is also analyzed by the frequency spectrum to present the vibration characters while the rotation speed approaches the critical ratio. The detailed numerical eigenvalues of the transition matrix are applied to analyze the types of the bifurcations of the cracked rotor system. Three types of bifurcations are found and responses of the cracked rotor system at these bifurcations are presented for the visualized comparisons.


2021 ◽  
Vol 104 (1) ◽  
pp. 103-123
Author(s):  
Xiaoshen Zhang ◽  
Zhe Sun ◽  
Lei Zhao ◽  
Xunshi Yan ◽  
Jingjing Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document