Coupled Dynamic Analysis of Magnetic Bearing-Rotor System under the Influences of Base Motion

2011 ◽  
Vol 109 ◽  
pp. 199-203
Author(s):  
Wei Wei Zhang

To investigate the active magnetic bearing-rotor system which is influenced by the base motion, coupled dynamic model is developed in this paper. The effects of base motion, electrical differential equations of control system and the mounting of sensors at different positions on the dynamic characteristics of the magnetic bearing-rotor system were discussed. The feasibility of the dynamic model is illustrated. This dynamic model can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.

Author(s):  
Zhe Sun ◽  
Xiao Kang ◽  
Jingjing Zhao ◽  
Guojun Yang ◽  
Zhengang Shi

Magnetic bearings are widely applied in High Temperature Gas-cooled Reactor (HTGR) and auxiliary bearings are important backup and safety components in AMB systems. The dynamic analysis of the AMB rotors touchdown process is an important foundation for designing auxiliary bearings. In this paper, a data-based dynamic analysis of the touchdown process is proposed. The dynamic model of the touchdown process is firstly established and then the nonlinear extended Kalman filtering technique is applied. Based on the dynamic model and Kalman filtering technique, the proposed method can offer estimations of rotor’s displacements, velocities and accelerations from noisy observations. The proposed method is validated by the experiment data from touchdown experiments. The touchdown experiments are performed on an experimental system with a 440kg heavy rotor, the rotational speed in the experiments is 5000RPM and no brake is applied.


Author(s):  
Changsheng Zhu ◽  
David A. Robb ◽  
David J. Ewins

The dynamic characteristics of a cracked rotor with an active magnetic bearing (AMB) are theoretically analyzed in this paper. The effects of using optimal controller parameters on the dynamic characteristics of the cracked rotor and the effect of the crack on the stability of the active control system are discussed. It is shown that the dynamic characteristics of the cracked rotor with AMBs are clearly more complex than that of the traditional cracked rotor system. Adaptive control with AMBs may hide the fault characteristics of the cracked rotor, rather than helping to diagnose a crack; this will depend on the controller strategy used. It is very difficult to detect a crack in the AMB-rotor system when the vibration of the rotor system is fully controlled. Only the super-harmonic components of 2X and 3X revolution in the sub-critical speed region can be used as a index to detect a crack in the rotor–AMB system. If the effect of the crack is not considered in designing the controller, then the AMB-rotor system will lose its stability in some cases when cracks appear.


2021 ◽  
Vol 104 (1) ◽  
pp. 103-123
Author(s):  
Xiaoshen Zhang ◽  
Zhe Sun ◽  
Lei Zhao ◽  
Xunshi Yan ◽  
Jingjing Zhao ◽  
...  

2013 ◽  
Vol 198 ◽  
pp. 451-456 ◽  
Author(s):  
Rafał P. Jastrzębski ◽  
Alexander Smirnov ◽  
Katja Hynynen ◽  
Janne Nerg ◽  
Jussi Sopanen ◽  
...  

This paper presents the practical results of the design analysis, commissioning, identification, sensor calibration, and tuning of an active magnetic bearing (AMB) control system for a laboratory gas blower. The presented step-by-step procedures, including modeling and disturbance analysis for different design choices, are necessary to reach the full potential of the prototype in research and industrial applications. The key results include estimation of radial and axial disturbance forces caused by the permanent magnet (PM) rotor and a discussion on differences between the unbalance forces resulting from the PM motor and the induction motor in the AMB rotor system.


Sign in / Sign up

Export Citation Format

Share Document